
ORAC 6 User Manual

Release 6.0

ORAC: A Molecular Dynamics Program

to Simulate Complex Molecular Systems

at the atomistic level

Authors and copyright holders:

Piero Procacci

Massimo Marchi

Contributors:

Simone Marsili

Tom Darden

Marc Souaille

Giorgio Federico Signorini

Riccardo Chelli

Emilio Gallicchio

Contents

1 Atomistic simulations: an introduction 4

1.1 Multiple time steps integration schemes and electrostatic interactions in complex biomolecular systems 4
1.2 Enhanced sampling in atomistic simulations . 6

2 Symplectic and Reversible Integrators 9

2.1 Canonical Transformation and Symplectic Conditions . 9
2.2 Liouville Formalism: a Tool for Building Symplectic and Reversible Integrators 11
2.3 Potential Subdivision and Multiple Time Steps Integrators for NVE Simulations 12
2.4 Constraints and r–RESPA . 15
2.5 Applications . 15

3 Multiple Time Steps Algorithms for the Isothermal-Isobaric Ensemble 19

3.1 The Parrinello-Rahman-Nosé Extended Lagrangian . 19
3.2 The Parrinello-Rahman-Nosé Hamiltonian and the Equations of Motion 20
3.3 Equivalence of Atomic and Molecular Pressure . 23
3.4 Liouvillean Split and Multiple Time Step Algorithm for the NPT Ensemble 25
3.5 Group Scaling and Molecular Scaling . 28
3.6 Switching to Other Ensembles . 28

4 Multiple Time Steps Algorithms For Large Size Flexible Systems with Strong Electrostatic Interactions

4.1 Subdivision of the “Bonded” Potential . 30
4.2 The smooth particle mesh Ewald method . 34
4.3 Subdivision the Non Bonded Potential . 37
4.4 Electrostatic Corrections for the Multiple Time Step Simulation 38

5 The Hamiltonian Replica Exchange Method 42

5.1 Temperature REM . 42
5.2 Hamiltonian REM . 44
5.3 Calculating Ensemble Averages Using Configurations from All Ensembles (MBAR estimator) 47

6 Serial generalized ensemble simulations 49

6.1 Introduction . 49
6.2 Fundamentals of serial generalized-ensemble methods . 50

6.2.1 SGE simulations in temperature-space (simulated tempering) and its implementation in the ORAC program
6.2.2 SGE simulations in λ-space . 52

6.3 The algorithm for optimal weights . 52
6.3.1 Tackling free energy estimates . 52
6.3.2 Implementation of adaptive free energy estimates in the ORAC program: the BAR-SGE method 54
6.3.3 Free energy evaluation from independent estimates and associated variances 56

7 Metadynamics Simulation: history-dependent algorithms in Non-Boltzmann sampling 57

7.1 Implementation in ORAC . 58

1

CONTENTS 2

8 Steered Molecular Dynamics 61

8.1 The Crooks theorem . 61
8.2 Determination of the potential of mean force via bidirectional non equilibrium techniques . 64
8.3 Implementation in ORAC . 65

9 Alchemical Transformations 68

9.0.1 Production of the MD trajectory with an externally driven alchemical process . . . 68
9.0.2 Calculation of the alchemical work . 72
9.0.3 Fast switching Double Annihilation method . 76

10 Input to ORAC 77

10.1 General Features . 77
10.2 Environments, Commands and Sub-commands . 77

10.2.1 &ANALYSIS . 79
10.2.2 &INOUT . 80
10.2.3 &INTEGRATOR . 86
10.2.4 &META . 89
10.2.5 &PARAMETERS . 93
10.2.6 &POTENTIAL . 100
10.2.7 &PROPERTIES . 115
10.2.8 &REM . 122
10.2.9 &RUN . 127
10.2.10&SETUP . 133
10.2.11&SGE . 138
10.2.12&SIMULATION . 144
10.2.13&SOLUTE . 152
10.2.14&SOLVENT . 156

10.3 Input to ORAC : Force Field and Topology Files . 160
10.3.1 Force Field Parameters . 160
10.3.2 Topology . 164

11 Compiling and Running ORAC 171

11.1 Compiling the Program . 171
11.1.1 Serial version . 171
11.1.2 Parallel version . 172

11.2 How to set dimensions in ORAC : The config.h file . 173

CONTENTS 1

Preface

This manual is for release 6.0 of the program ORAC .1

In release 6.0 ORAC has been equipped with a hybrid Open Multi-Processing(OpenMP)/Message Passing
Interface (MPI) multilevel parallelism tailored for generalized ensemble (GE) and fast switching double
annihilation (FS-DAM) nonequilibrium (NE) technology[1] for evaluating the binding free energy in drug-
receptors system on High Performance Computing platforms. The production of the GE or FS-DAM
trajectories is handled using a weak scaling parallel approach on the MPI level only, while a strong scaling
force domain decomposition scheme is implemented for intranode computations with shared memory access
at the OpenMP level. The present manual is organized as follows: The first seven chapters constitute the
ORAC theoretical background. Chapter 1) contains general and introductory remarks. Chapter 2) deals
with symplectic and reversible integrators and introduces to the Liouvillean formalism, Chapter 3) extends
the Liouvillean formalism to the extended Lagrangian methods and Chapter 4) describes how to deal with
long range electrostatic interactions and how to combine the SPME method with the multilevel integration
of the equations of motion in order to obtain efficient simulation algorithms. Chapter for 5 to 7 have
been added in the release 5. Chapter 5) contains an introduction to replica exchange techniques and a
description on how such a technique has been implemented in the ORAC program. Chapter 6) deals with
metadynamics simulations. Chapter 7) treats steered molecular dynamics simulation and the theory of non
equilibrium processes. Chapter 8) is the command reference of the ORAC program. Chapter 9) contains
instructions on how to compile and run ORAC in a serial and parallel environment.

1The ORAC program has been copyrighted (C) by Massimo Marchi and Piero Procacci 1995-2008. This program is free
software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU for more details.
A general version of the GPL may be requested at: Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

CONTENTS 2

Contributors to ORAC

Main contributors and license holders:

Piero Procacci2

Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
E-mail: piero.procacci@unifi.it

Massimo Marchi

Commissariat à l’Énergie Atomique DSV/IBITEC-S/SB2SM Centre dÉtudes de Saclay, 91191 Gif sur
Yvette Cedex, France
E-mail: massimo.marchi@cea.fr

Other contributors:

Simone Marsili

Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
E-mail: simone.marsili@unifi.it
Role in development: Replica Exchange Method and Metadynamics.

Giorgio Federico Signorini

Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
E-mail: giorgio.signorini@unifi.it
Role in development: Tests; tools; package, distribution, and version management.

Riccardo Chelli

Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
E-mail: riccardo.chelli@unifi.it
Role in development: Serial Generalized Ensemble simulations.

Marc Souaille

Medit SA, 2 rue du Belvédère 91120 Palaiseau, France
Role in development: linked cell neighbor listing routines.

2Author to whom comments and bug reports should be sent.

CONTENTS 3

Literature citation

The current version of ORAC represents a further development of the release published in 1997[2]. The
required citations are

P. Procacci, T. A. Darden, E. Paci, M. Marchi
ORAC: a molecular dynamics program to simulate complex molecular systems with realistic electrostatic inter-

actions

J. Comput. Chem. 1997, Volume:18, Pages:1848-1862

S. Marsili, G. F. Signorini, R. Chelli, M. Marchi, P. Procacci
ORAC: a molecular dynamics simulation program to explore free energy surfaces in biomolecular systems at the

atomistic level

J. Comput. Chem. 2010, Volume:31, Pages:1106-1116

In general, in addition to the above citations, we recommend citing the original references describing the
theoretical methods used when reporting results obtained from ORAC calculations. These references are
given in the description of the theory through the user guide as well as in the description of the relevant
keywords.

Chapter 1

Atomistic simulations: an
introduction

In this manual we describe ORAC , a program for the molecular dynamics (MD) simulation of atomistic
models of complex molecular systems. In atomistic models the coordinates of all atomic nuclei including
hydrogen are treated explicitly and interactions between distant atoms are represented by a pairwise
additive dispersive-repulsive potential and a Coulomb contribution due to the atomic charges. Furthermore,
nearby atoms interact through special two body, three body and four body functions representing the
valence bonds, bending and torsional interaction energies surfaces.

The validity of such an approach as well as the reliability of the various potential models proposed in the
literature [3, 4, 5, 6] is not the object of the present book. For reading on this topic, we refer to the extensive
and ever growing literature [4, 7, 8, 9]. Here, we want only to stress the general concept that atomistic
simulations usually have more predictive power than simplified models, but are also very expensive with
respect to the latter from a computational standpoint. This predictive power stems from the fact that,
in principle, simulations at the atomistic level do not introduce any uncontrolled approximation besides
the obvious assumptions inherent in the definition of the potential model and do not assume any a priori
knowledge of the system, except of course its chemical composition and topology. Therefore, the failure
in predicting specific properties of the system for an atomistic simulation is due only to the inadequacy of
the adopted interaction potential. We may define this statement as the brute force postulate. In practice,
however, in order to reduce the computational burden, severe and essentially uncontrolled approximations
such as neglect of long range interactions, suppression of degrees of freedom, dubious thermostatting or
constant pressure schemes are often undertaken. These approximations, however, lessen the predictive
power of the atomistic approach and incorrect results may follow due to the inadequacy in the potential
model, baseless approximations or combinations of the two. Also, due to their cost, the predictive capability
of atomistic level simulations might often only be on paper, since in practice only a very limited phase
space region can be accessed in an affordable way, thereby providing only biased and unreliable statistics
for determining the macroscopic and microscopic behavior of the system. It is therefore of paramount
importance in atomistic simulations to use computational techniques that do not introduced uncontrolled
approximations and at the same time are efficient in the sampling of the complex and rugged conformational
space of biological systems. Regarding this last issue, many progresses has been done recently by devising
new both non-Boltzmann and Boltzmann techniques for extended sampling of complex systems. Chapter
6 and Chapter 7 are devoted to these aspects of atomistic molecular simulations.

1.1 Multiple time steps integration schemes and electrostatic in-
teractions in complex biomolecular systems

As stated above, simulations of complex systems at the atomistic level, unlike simplified models, have the
advantage of representing with realistic detail the full flexibility of the system and the potential energy
surface according to which the atoms move. Both these physically significant ingredients of the atomistic
approach unfortunately pose severe computational problems: on one hand the inclusion of full flexibility

4

Atomistic simulations: an introduction 5

necessarily implies the selection of small step size thereby reducing in a MD simulation the sampling power
of the phase space. On the other hand, especially the evaluation of inter-particle long range interactions is
an extremely expensive task using conventional methods, its computational cost scaling typically like N2

(with N being the number of particles) quickly exceeding any reasonable limit. In this book we shall devote
our attention to the methods, within the framework of classical MD simulations, that partially overcome
the difficulties related to the presence of flexibility and long range interactions when simulating complex
systems at the atomistic level.

Complex systems experience different kind of motions with different time scales: Intramolecular vibra-
tions have a period not exceeding few hundreds of femtoseconds while reorientational motions and confor-
mational changes have much longer time scales ranging from few picoseconds to hundreds of nanoseconds.
In the intra-molecular dynamics one may also distinguish between fast stretching involving hydrogen with
period smaller than 10 fs, stretching between heavy atoms and bending involving hydrogen with double
period or more, slow bending and torsional movements and so on. In a similar manner in the diffusional
regime many different contributions can be identified.

In a standard integration of Newtonian equations, all these motions, irrespective of their time scales, are
advanced using the same time step whose size is inversely proportional to the frequency of the fastest degree
of freedom present in the system, therefore on the order of the femtosecond or even less. This constraint on
the step size severely limits the accessible simulation time. One common way to alleviate the problem of
the small step size is to freeze some supposedly irrelevant and fast degrees of freedom in the system. This
procedure relies on the the so-called SHAKE algorithm [10, 11, 12] that implements holonomic constraints
while advancing the Cartesian coordinates. Typically, bonds and/or bending are kept rigid thus removing
most of the high frequency density of states and allowing a moderate increase of the step size. The SHAKE
procedure changes the input potential and therefore the output density of the states. Freezing degrees of
freedom, therefore, requires in principle an a priori knowledge of the dynamical behavior of the system.
SHAKE is in fact fully justified when the suppressed degrees of freedom do not mix with the “relevant”
degrees of freedom. This might be “almost” true for fast stretching involving hydrogen which approximately
defines an independent subspace of internal coordinates in almost all complex molecular systems [13] but
may turn to be wrong in certain cases even for fast stretching between heavy atoms. In any case the degree
of mixing of the various degrees of freedom of a complex system is not known a priori and should be on
the contrary considered one of the targets of atomistic simulations. The SHAKE algorithm allows only
a moderate increase of the step size while introducing, if used without caution, essentially uncontrolled
approximations. In other words indiscriminate use of constraints violates the brute-force postulate. A
more fruitful approach to the multiple time scale problem is to devise a more efficient “multiple time
step” integration of the equation of motion. Multiple time step integration in MD is a relatively old
idea [14, 15, 16, 17, 18, 19] but only in recent times, due to the work of Tuckerman, Martyna and
Berne and coworkers [20, 21, 22, 23, 24, 25] is finding widespread application. These authors introduced
a very effective formalism for devising multilevel integrators based on the symmetric factorization of the
Liouvillean classical time propagator. The multiple time step approach allows integration of all degrees
of freedom at an affordable computational cost. In the simulation of complex systems, for a well tuned
multilevel integrator, the speed up can be sensibly larger than that obtained imposing bond constraints.
Besides its efficiency, the multiple time steps approach has the advantage of not introducing any a priori
assumption that may modify part of the density of the state of the system.

The Liouvillean approach to multiple time steps integrator lends itself to the straightforward, albeit
tedious, application to extended Lagrangian systems for the simulation in the canonical and isobaric ensem-
bles: once the equations of motions are known, the Liouvillean and hence the scheme, is de facto available.
Many efficient multilevel schemes for constant pressure or constant temperature simulation are available
in the literature [26, 25, 27].

As already outlined, long range interactions are the other stumbling block in the atomistic MD simula-
tion of complex systems. The problem is particularly acute in biopolymers where the presence of distributed
net charges makes the local potential oscillate wildly while summing, e.g. onto spherical non neutral shells.
The conditionally convergent nature of the electrostatic energy series for a periodic system such as the
MD box in periodic boundary conditions (PBC) makes any straightforward truncation method essentially
unreliable [28, 12, 29].

The reaction field [30, 31] is in principle a physically appealing method that correctly accounts for long
range effects and requires only limited computational effort. The technique assumes explicit electrostatic

Atomistic simulations: an introduction 6

interactions within a cutoff sphere surrounded by a dielectric medium which exerts back in the sphere a
“polarization” or reaction field. The dielectric medium has a dielectric constant that matches that of the
inner sphere. The technique has been proved to give results identical to those obtained with the exact
Ewald method in Monte Carlo simulation of dipolar spherocilynders where the dielectric constant that
enters in the reaction field is updated periodically according to the value found in the sphere. The reaction
field method does however suffer of two major disadvantages that strongly limits its use in MD simulations
of complex systems at the atomistic level: during time integration the system may experience instabilities
related to the circulating dielectric constant of the reaction field and to the jumps into the dielectric of
molecules in the sphere with explicit interactions. The other problem, maybe more serious, is that again
the method requires an a priori knowledge of the system, that is the dielectric constant. In pure phases this
might not be a great problem but in inhomogeneous systems such as solvated protein, the knowledge of the
dielectric constant might be not easily available. Even with the circulating technique, an initial unreliable
guess of the unknown dielectric constant, can strongly affect the dielectric behavior of the system and in
turn its dynamical and structural state.

The electrostatic series can be computed in principle exactly using the Ewald re-summation technique
[32, 33]. The Ewald method rewrites the electrostatic sum for the periodic system in terms of two absolutely
convergent series, one in the direct lattice and the other in reciprocal lattice. This method, in its standard
implementation, is extremely CPU demanding and scales like N2 with N being the number of charges
with the unfortunate consequence that even moderately large size simulations of inhomogeneous biological
systems are not within its reach. The rigorous Ewald method, which does not suffers of none of the
inconveniences experienced by the reaction field approach, has however regained resurgent interest very
recently after publication by Darden, York and Pedersen [34] of the Particle Mesh technique and later
on by Essmann, Darden at al.[35] of the variant termed Smooth Particle Mesh Ewald (SPME). SPME
is based on older idea idea of Hockney [36] and is essentially an interpolation technique with a charge
smearing onto a regular grid and evaluation via fast Fourier Transform (FFT) of the interpolated reciprocal
lattice energy sums. The performances of this techniques, both in accuracy and efficiency, are astonishing.
Most important, the computational cost scales like N logN , that is essentially linearly for any practical
application. Other algorithm like the Fast Multipole Method (FMM) [37, 38, 39, 40] scales exactly like N ,
even better than SPME. However FMM has a very large prefactor and the break even point with SPME
is on the order of several hundred thousand of particles, that is, as up to now, beyond any reasonable
practical limit.

The combination of the multiple time step algorithm and of the SPME [13] makes the simulation of
large size complex molecular systems such as biopolymers, polar mesogenic molecules, organic molecules in
solution etc., extremely efficient and therefore affordable even for long time spans. Further, this technique
do not involve any uncontrolled approximation1 and is perfectly consistent with standard PBC.

1.2 Enhanced sampling in atomistic simulations

Standard equilibrium simulations of complex biosystems are usually done on a single solvated biomolecule
in PBC due to computational bounds.2.

In these conditions the only mean to measure, e.g., the free energy differences between two given protein
conformations, is to record the number of times the protein molecule in the MD cell is observed in each
of the two conformations. Swaps between these conformers can take, in (time) average, as long as 0.1-1
microseconds[41] even for small proteins. One then needs to do extremely long equilibrium simulations
in order to have a sufficient number of swaps between conformational states so as to determine with
good accuracy a stationary (equilibrium) ratio of the conformational probability and hence the free energy

1Of course SPME is itself an approximation of the true electrostatic energy. This approximation is however totally under
control since the energy can be determined to any given accuracy and the effect of finite accuracy can be easily controlled on
any computed property of the system. The approximation is not uncontrolled.

2The explicit (i.e. atomistic) solvent introduced in the MD cell is in fact the minimum amount required such that the
distance between any two portion of different solute replicas is sufficiently large so as to assume negligible interprotein
interactions. Also the shape of the MD cell is usually chosen so as to minimize the amount of explicit solvent whose sole role,
at an extremely demanding computational cost, is to provide the correct dielectric medium for the biomolecule (including
microsolvation effects) .For example, globular (i.e. quasi-spherical) proteins are usually simulated in a dodecahedric box. Such
a system, single solvated protein in PBC, is thus representative of dilute solution of biomolecules since the solute molecules
in the periodic systems can never come close to each other, thereby interacting

Atomistic simulations: an introduction 7

difference. To give just a faint idea of the computational cost involved, for the simple system of decaalanine
in vacuo, 1.0 microseconds of serial simulation takes about 10 days on 2.5 MH processor. Due to this
computational bounds, standard molecular dynamics simulation of even small biological systems are in
general not ergodic in the accessible simulation time. Typically, the system remains trapped during the
whole simulation time span in a local minimum and the rare event of escaping the trap surmounting a free
energy barrier never happens.

In order to overcome such severe sampling problem, many recent MD techniques has been devised. The
Replica Exchange Method (REM)[42, 43, 44, 45] provides an elegant and simple solution to quasi-ergodic
sampling. In REM, several independent trajectories, called replicas, are simultaneously generated in dif-
ferent thermodynamic conditions. The production of these simultaneous trajectories usually occurs on an
array of parallel processors. The thermodynamics conditions of these replicas are chosen so as to span ho-
mogeneously the thermodynamic space from the ensemble of interest to a different ensemble with enhanced
transition rates, where the sampling is ergodic. During the simulation, neighboring replicas are allowed
to exchange their configurations, subject to specific acceptance criteria. In this fashion, a trajectory is no
longer bound to an unique given equilibrium ensemble but can randomly walk in a thermodynamic space of
different equilibrium conditions, visiting ensembles where an ergodic sampling is possible, and then going
back to the quasi-ergodic ensemble of interest. Therefore, REM is an algorithm which employs an extended
ensemble formalism in order to overcome slow relaxation. The gain in sampling efficiency with respect to
a series of uncoupled parallel trajectories comes from the exchange of information between trajectories,
and the replica exchange process is the tool by which “information” (e.g. a particular configuration) is
carried, for example, from an high to a low temperature. The REM algorithm can be used in principle
without prior knowledge of the “important” reaction coordinates of the system, i.e., in the case of biological
systems, those that defines the accessible conformational space in the target thermodynamics conditions.
The REM algorithm is described in detail in Chapter 5.

A class of simulation algorithms closely related to REM are the so-called serial generalized-ensemble
(SGE) methods[46]. The basic difference between SGE methods and REM is that in the former no pairs
of replicas are necessary to make a trajectory in temperature space and more generally in the generalized
ensemble space. In SGE methods only one replica can undergo ensemble transitions which are realized on
the basis of a Monte Carlo like criterion. The most known example of SGE algorithm is the simulated
tempering technique[44, 47], where weighted sampling is used to produce a random walk in temperature
space. An important limitation of SGE approaches is that an evaluation of free energy differences between
ensembles is needed as input to ensure equal visitation of the ensembles, and eventually a faster conver-
gence of structural properties[48]. REM was just developed to eliminate the need to know a priori such
free energy differences. On the other side, several studies[48, 49, 50] have reported that SGE in general and
simulated tempering in particular consistently gives a higher rate of delivering the system between high
temperature states and low temperature states, as well as a higher rate of crossing the potential energy
space. Moreover SGE methods are well-suited to distributed computing environments because synchroniza-
tion and communication between replicas/processors can be avoided. The potential of mean force[51, 52]
along a chosen collective coordinate can be computed a posteriori in REM and SGE simulations using
multiple-histogram reweighting techniques[53, 54]. The potential of mean force can also be determined
by performing SGE and REM simulations directly in the space of the collective coordinate[55]. In the
ORAC program we have implemented SGE simulations, either in a simulated-tempering like fashion or in
the space of bond, bending, and torsion coordinates. These simulations exploit the adaptive method to
calculate weight factors (i.e. free energies) proposed in Ref. [56]. The method is described in Chapter 6.

The a priori identification of the unknown coordinates, along with their underlying free energy sur-
face, are actually one of the outputs of the REM and SGE approaches. However, once these important
coordinates are known, one can use less expensive techniques to study the associated essential free energy
surface. Canonical reweighting or Umbrella Sampling methods[57], for example, modify (bias) the interac-
tion Hamiltonian of the system in such a way to facilitate barrier crossing between conformational basins.
The canonical average of the unperturbed systems are then reconstructed by appropriately reweighting the
biased averaged.

Quasi-equilibrium techniques[58, 59, 60, 61] builds such biasing potential that favors barrier crossing by
periodically adding a small perturbation to the system Hamiltonian so as to progressively flatten the free
energy surfaces along selected reaction coordinates. For example, in the so-called standard “metadynamics”
simulation method[58], a history-dependent potential, made of accumulated Gaussian functions deposited

Atomistic simulations: an introduction 8

continuously at the instantaneous values of the given reaction coordinates, is imposed to the system. The
history-dependent potential disfavors configurations in the space of the reaction coordinates that have
already been visited, and it has been shown, by appropriately adjusting system dependent parameters,
to numerically converge to the inverse of the free energy surface.[62] In the present version of ORAC the
metadynamics technique has been implemented in the parallel version whereby multiple metadynamics
simulation (walkers) are run in parallel cooperatively building a common history dependent potential which
is passed among all processes. The history dependent potential is generally defined over a multidimensional
domain involving several reaction coordinates. Metadynamics can be used, e.g., to identify the minimum
free energy path between two metastable protein states defining the reactants and products of an elementary
chemical reaction. Quasi-equilibrium techniques in biological systems converge rather slowly since the
convergence rate depends crucially on the inherent slow diffusion along the conformational coordinates. So
even if the potential is relatively flattened, the diffusion along a nearly free reaction coordinates can still be
slow due to the friction of the orthogonal coordinates. The metadynamics algorithm is described in detail
in Chapter 6.3.3

Non equilibrium techniques[63, 64, 65, 66] uses an additional driving potential acting on an appropriate
reaction coordinates to fast steer the system from a given equilibrium initial state to a given final state,
and viceversa producing a series of forward and reverse non equilibrium trajectories. The driven coordinate
is strictly mono-dimensional but can be defined as a trajectory in a multidimensional reaction coordinate
space. The free energy differences between the initial and final states (the reactants and the products) is
connected, through the Crooks fluctuation theorem[64], to the ratio of distribution functions of the work
spent in these trajectories. Free energy reconstruction, using non equilibrium steered molecular dynamics,
of the potential of mean force[67] along one arbitrary reaction coordinate is described in detail in Chapter
7.1.

Chapter 2

Symplectic and Reversible
Integrators

In an Hamiltonian problem, the symplectic condition and microscopic reversibility are inherent properties
of the true time trajectories which, in turn, are the exact solution of Hamilton’s equation. A step-wise
integration defines a t-flow mapping which may or may not retain these properties. Non symplectic and/or
non reversible integrators are generally believed [68, 69, 70, 71] to be less stable in the long-time integration
of Hamiltonian systems. In this section we shall illustrate the concept of reversible and symplectic mapping
in relation to the numerical integration of the equations of motion.

2.1 Canonical Transformation and Symplectic Conditions

Given a system with n generalized coordinates q, n conjugated momenta p and Hamiltonian H , the corre-
sponding Hamilton’s equations of motion are

q̇i =
∂H

∂pi

ṗi = −
∂H

∂qi
i = 1, 2,n (2.1)

These equations can be written in a more compact form by defining a column matrix with 2n elements
such that

x =

(

q

p

)

. (2.2)

In this notation the Hamilton’s equations (2.1) can be compactly written as

ẋ = J
∂H

∂x
J =

(

0 1

−1 0

)

(2.3)

where J is a 2n× 2n matrix, 1 is an n× n identity matrix and 0 is a n× n matrix of zeroes. Eq. (2.3) is
the so-called symplectic notation for the Hamilton’s equations.1

Using the same notation we now may define a transformation of variables from x ≡ {q, p} to y ≡ {Q,P}
as

y = y(x) (2.4)

For a restricted canonical transformation [72, 73] we know that the function H(x) expressed in the new
coordinates y serves as the Hamiltonian function for the new coordinates y, that is the Hamilton’s equations

1Symplectic means “intertwined” in Greek and refers to the interlaced role of coordinate and momenta in Hamilton’s
equations.

9

Symplectic and Reversible Integrators 10

of motion in the y basis have exactly the same form as in Eq. (2.3):

ẏ = J
∂H

∂y
(2.5)

If we now take the time derivative of Eq. (2.4), use the chain rule relating x and y derivatives and use Eq.
(2.5), we arrive at

ẏ = MJMt∂H

∂y
. (2.6)

Here M is the Jacobian matrix with elements

Mij = ∂yi/∂xi, (2.7)

and Mt is its transpose. By comparing Eqs. (2.5) and (2.6), we arrive at the conclusion that a trans-
formation is canonical if, and only if, the Jacobian matrix M of the transformation Eq. 2.4 satisfies the
condition

MJMt = J. (2.8)

Eq. (2.8) is known as the symplectic condition for canonical transformations and represents an effective
tool to test whether a generic transformation is canonical. Canonical transformations play a key role in
Hamiltonian dynamics. For example, consider transformation φ

z(t) = φ(t, z(0)) (2.9)

where {p0q0} ≡ z(0) and {P,Q} ≡ z(t), i.e. one writes the coordinates and momenta at time t, obtained
from the solution of the Hamiltonian equation of motion, as a function of the coordinates and momenta at
the initial time zero. This transformation, which depends on the scalar parameter t, is trivially canonical
since both {p0q0} and {P,Q} satisfies the Hamilton equations of motion. Hence the above transformation
defines the t-flow mapping of the systems and, being canonical, its Jacobian matrix obeys the symplectic
condition (2.8). An important consequence of the symplectic condition, is the invariance under canonical
(or symplectic) transformations of many properties of the phase space. These invariant properties are
known as “Poincare invariants” or canonical invariants. For example transformations or t-flow’s mapping
obeying Eq. (2.8) preserve the phase space volume. This is easy to see, since the infinitesimal volume
elements in the y and x bases are related by

dy = | detM|dx (2.10)

where | detM| is the Jacobian of the transformation. Taking the determinant of the symplectic condition
Eq. (2.8) we see that | detM| = 1 and therefore

dy = dx. (2.11)

For a canonical or symplectic t-flow mapping this means that the phase total space volume is invariant and
therefore Liouville theorem is automatically satisfied.

A step-wise numerical integration scheme defines a ∆t-flow mapping or equivalently a coordinates
transformation, that is

Q(∆t) = Q(q(0), p(0),∆t)
P (∆t) = P (q(0), p(0),∆t)

y(∆t) = y(x(0)). (2.12)

We have seen that exact solution of the Hamilton equations has t-flow mapping satisfying the symplectic
conditions (2.8). If the Jacobian matrix of the transformation (2.12) satisfies the symplectic condition then
the integrator is termed to be symplectic. The resulting integrator, therefore, exhibits properties identical
to those of the exact solution, in particular it satisfies Eq. (2.11). Symplectic algorithms have also been
proved to be robust, i.e resistant to time step increase, and generate stable long time trajectory, i.e. they
do not show drifts of the total energy. Popular MD algorithms like Verlet, leap frog and velocity Verlet are
all symplectic and their robustness is now understood to be due in part to this property. [70, 20, 23, 71]

Symplectic and Reversible Integrators 11

2.2 Liouville Formalism: a Tool for Building Symplectic and Re-

versible Integrators

In the previous paragraphs we have seen that it is highly beneficial for an integrator to be symplectic. We
may now wonder if there exists a general way for obtaining symplectic and possibly, reversible integrators
from “first principles”. To this end, we start by noting that for any property which depends on time
implicitly through p, q ≡ x we have

dA(p, q)

dt
=

∑

q,p

(

q̇
∂A

∂q
+ ṗ

∂A

∂p

)

=
∑

q,p

(

∂H

∂p

∂A

∂q
−

∂H

∂q

∂A

∂p

)

= iLA (2.13)

where the sum is extended to all n degrees of freedom in the system. L is the Liouvillean operator defined
by

iL ≡
∑

q,p

(

q̇
∂

∂q
+ ṗ

∂

∂p

)

=
∑

q,p

(

∂H

∂p

∂

∂q
−

∂H

∂q

∂

∂p

)

. (2.14)

Eq. (2.13) can be integrated to yield

A(t) = eiLtA(0). (2.15)

If A is the state vector itself we can use Eq. (2.15) to integrate Hamilton’s equations:

[

q(t)
p(t)

]

= eiLt

[

q(0)
p(0)

]

. (2.16)

The above equation is a formal solution of Hamilton’s equations of motion. The exponential operator
eiLt times the state vector defines the t-flow of the Hamiltonian system which brings the system phase
space point from the initial state q0, p0 to the state p(t), q(t) at a later time t. We already know that this
transformation obeys Eq. (2.8). We may also note that the adjoint of the exponential operator corresponds
to the inverse, that is eiLt is unitary. This implies that the trajectory is exactly time reversible. In order
to build our integrator, we now define the discrete time propagator eiL∆t as

eiLt =
[

eiLt/n
]n

; ∆t = t/n (2.17)

eiL∆t = e
∑

q,p(q̇ ∂
∂q+ṗ ∂

∂p)∆t. (2.18)

In principle, to evaluate the action of eiL∆t on the state vector p, q one should know the derivatives of
all orders of the potential V . This can be easily seen by Taylor expanding the discrete time propagator
eil∆t and noting that the operator q̇∂/∂q does not commute with −∂V/∂q(∂/∂p) when the coordinates and
momenta refer to same degree of freedom. We seek therefore approximate expressions of the discrete time
propagator that retain both the symplectic and the reversibility property. For any two linear operators
A,B the Trotter formula [74] holds:

e(A+B)t = lim
n→∞

(eAt/neBt/n)n (2.19)

We recognize that the propagator Eq. (2.18) has the same structure as the left hand side of Eq. (2.19);
hence, using Eq. (2.19), we may write for ∆t sufficiently small

eiL∆t = e(q̇
∂
∂q+ṗ ∂

∂p)∆t ≃ eq̇
∂
∂q∆teṗ

∂
∂p∆t +O(∆t2) . (2.20)

Where, for simplicity of discussion, we have omitted the sum over q and p in the exponential. Eq. (2.20) is
exact in the limit that ∆t→ 0 and is first order for finite step size. Using Eq. (2.8) it is easy to show that the
t-flow defined in Eq. (2.20) is symplectic, being the product of two successive symplectic transformations.
Unfortunately, the propagator Eq. (2.20) is not unitary and therefore the corresponding algorithm is not

Symplectic and Reversible Integrators 12

time reversible. Again the non unitarity is due to the fact that the two factorized exponential operators
are non commuting. We can overcome this problem by halving the time step and using the approximant:

e(A+B)t ≃ eAt/2eBt/2eBt/2eAt/2 = eAt/2eBteAt/2. (2.21)

The resulting propagator is clearly unitary, therefore time reversible, and is also correct to the second
order [75]. Thus, requiring that the product of the exponential operator be unitary, automatically leads to
more accurate approximations of the true discrete time propagator [76, 75]. Applying the same argument
to the propagator (2.18) we have

eiL∆t = e(q̇
∂
∂q+ṗ ∂

∂p)∆t ≃ eṗ
∂
∂p∆t/2eq̇

∂
∂q∆teṗ

∂
∂p∆t/2 + O(∆t3). (2.22)

The action of an exponential operator e(a∂/∂x) on a generic function f(x) trivially corresponds to the Taylor
expansion of f(x) around the point x at the point x+ a, that is

ea∂/∂xf(x) = f(x+ a). (2.23)

Using Eq. (2.23), the time reversible and symplectic integration algorithm can now be derived by acting
with our Hermitian operator Eq. (2.22) onto the state vector at t = 0 to produce updated coordinate and
momenta at a later time ∆t. The resulting algorithm is completely equivalent to the well known velocity
Verlet:

p(∆t/2) = p(0) + F (0)∆t/2

q(∆t) = q(0) +

(

p(∆t/2)

m

)

∆t

p(∆t) = p(∆t/2) + F (∆t)∆t/2. (2.24)

We first notice that each of the three transformations obeys the symplectic condition Eq. (2.8) and has a
Jacobian determinant equal to one. The product of the three transformation is also symplectic and, thus,
phase volume preserving. Finally, since the discrete time propagator (2.22) is unitary, the algorithm is
time reversible.

One may wonder what it is obtained if the operators q̇∂/∂q and −∂V/∂q(∂/∂p) are exchanged in the
definition of the discrete time propagator (2.22). If we do so, the new integrator is

q(∆t/2) = q(0) +
p(0)

m
∆t/2

p(∆t) = p(0) + F [q(∆t/2)]∆t

q(∆t) = q(∆t/2) +
p(∆t)

m
∆t/2. (2.25)

This algorithm has been proved to be equivalent to the so-called Leap-frog algorithm [77]. Tuckerman
et al. [20] called this algorithm position Verlet which is certainly a more appropriate name in the light of
the exchanged role of positions and velocities with respect to the velocity Verlet. Also, Eq. (2.21) clearly
shows that the position Verlet is essentially identical to the Velocity Verlet. A shift of a time origin by
∆t/2 of either Eq. (2.25) or Eq. (2.24) would actually make both integrator perfectly equivalent. However,
as pointed out in Ref. [21], half time steps are not formally defined, being the right hand side of Eq. (2.21)
an approximation of the discrete time propagator for the full step ∆t. Velocity Verlet and Position Verlet,
therefore, do not generate numerically identical trajectories although of course the trajectories are similar.

We conclude this section by saying that is indeed noticeable that using the same Liouville formalism
different long-time known schemes can be derived. The Liouville approach represent therefore a unifying
treatment for understanding the properties and relationships between stepwise integrators.

2.3 Potential Subdivision and Multiple Time Steps Integrators

for NVE Simulations

The ideas developed in the preceding sections can be used to build multiple time step integrators. Multiple
time step integration is based on the concept of reference system. Let us now assume that the system

Symplectic and Reversible Integrators 13

potential V be subdivided in n terms such that

V = V0 + V1 + ...+ Vn. (2.26)

Additionally, we suppose that the corresponding average values of the square modulus of the forces Fk =
|∂Vk/∂x| and of their time derivatives Ḟk = |d/dt(∂Vk/∂x)| satisfy the following condition:

F 2
0 >> F 2

1 >> .. >> F 2
n

Ḟ 2
0 >> Ḟ 2

1 >> .. >> Ḟ 2
n . (2.27)

These equations express the situation where different time scales of the system correspond to different
pieces of the potential. Thus, the Hamiltonian of the k-th reference system is defined as

H = T + V0 + ..Vk, (2.28)

with a perturbation given by:

P = Vk+1 + Vk+2..+ ..Vn. (2.29)

For a general subdivision of the kind given in Eq. (2.26) there exist n reference nested systems. In
the general case of a flexible molecular systems, we have fast degrees of freedom which are governed
by the stretching, bending and torsional potentials and by slow intermolecular motions driven by the
intermolecular potential. As we shall discuss with greater detail in section 4, in real systems there is
no clear cut condition between intra and intermolecular motions since their time scales may well overlap
in many cases. The conditions Eq. (2.27) are, hence, never fully met for any of all possible potential
subdivisions.

Given a potential subdivision Eq. (2.26), we now show how a multi-step scheme can be built with the
methods described in section 2.2. For the sake of simplicity, we subdivide the interaction potential of a
molecular system into two components only: One intra molecular, V0, generating mostly “fast” motions
and the other intermolecular, V1, driving slower degrees of freedom. Generalization of the forthcoming
discussion to a n-fold subdivision, Eq. (2.26), is then straightforward.

For the 2-fold inter/intra subdivision, the system with Hamiltonian H = T + V0 is called the intra-
molecular reference system whereas V1 is the intermolecular perturbation to the reference system. Corre-
spondingly, the Liouvillean may be split as

iL0 = q̇
∂

∂q
−

∂V0

∂q

∂

∂p

iL1 = −
∂V1

∂q

∂

∂p
. (2.30)

Here L0 is the Liouvillean of the 0-th reference system with Hamiltonian T +V0, while L1 is a perturbation
Liouvillean. Let us now suppose now that ∆t1 is a good time discretization for the time evolution of the
perturbation, that is for the slowly varying intermolecular potential. The discrete eiL∆t1 ≡ e(iL0+iL1)∆t1

time propagator can be factorized as

eiL∆t1 = eiL1∆t1/2(eiL0∆t1/n)neiL1∆t1/2

= eiL1∆t1/2(eiL0∆t0)neiL1∆t1/2, (2.31)

where we have used Eq. (2.21) and we have defined

∆t0 =
∆t1
n

(2.32)

as the time step for the “fast” reference system with Hamiltonian T + V0. The propagator (2.31) is
unitary and hence time reversible. The external propagators depending on the Liouvillean L1 acting
on the state vectors define a symplectic mapping, as it can be easily proved by using Eq. (2.8). The full
factorized propagator is therefore symplectic as long as the inner propagator is symplectic. The Liouvillean
iL0 ≡ q̇∂/∂q − ∂V0/∂q∂/∂p can be factorized according to the Verlet symplectic and reversible breakup

Symplectic and Reversible Integrators 14

described in the preceding section, but with an Hamiltonian T + V0. Inserting the result into Eq. (2.31)
and using the definition (2.30), the resulting double time step propagator is then

eiL∆t1 = e
−∂V1
∂q

∂
∂p∆t1/2

(

e
−∂V0

∂q
∂
∂p∆t0/2eq̇

∂
∂q∆t0e

−∂V0
∂q

∂
∂p∆t0/2

)n

e
−∂V1
∂q

∂
∂p∆t1/2 (2.33)

This propagator is unfolded straightforwardly using the rule (2.23) generating the following symplectic and
reversible integrator from step t = 0 to t = ∆t1:

p
(

∆t1
2

)

= p(0) + F1(0)
∆t1
2

DO i=1,n

p
(

∆t1
2 + i∆t0

2

)

= p
(

∆t1
2 + [i− 1] ∆t0

2

)

+ F0

(

[i− 1] ∆t0
2

)

∆t0
2

q (i∆t0) = q ([i− 1]∆t0) + p
(

∆t1
2 + i∆t0

2

)

∆t0
m

p
(

∆t1
2 + i∆t0

)

= p
(

∆t1
2 + i∆t0

2

)

+ F0 (i∆t0)
∆t0
2

ENDDO

p (∆t1) = p′(∆t1
2) + F1(n∆t0)

∆t1
2

(2.34)

Note that the slowly varying forces F1 are felt only at the beginning and the end of the macro-step2 ∆t1.
In the inner n steps loop the system moves only according to the Hamiltonian of the reference system
H = T + V0. When using the potential breakup, the inner reference system is rigorously conservative and
the total energy of the reference system (i.e. T + V0 + · · ·+ Vk) is conserved during the P micro-steps.3

The integration algorithm given an arbitrary subdivision of the interaction potential is now straight-
forward. For the general subdivision (2.26) the corresponding Liouvillean split is

iL0 = q̇
∂

∂q
−

∂Vi

∂q

∂

∂p
; iL1 = −

∂V1

∂q

∂

∂p
. . . ; iLn = −

∂Vk

∂q

∂

∂p
. (2.35)

We write the discrete time operator for the Liouville operator iL = L0 + ...Ln and use repeatedly the
Hermitian approximant and Trotter formula to get a hierarchy of nested reference systems propagator, viz.

ei(
∑n

i=0 Li)∆tn = eiLn
∆tn
2

(

ei(
∑n−1

i=0 Li)∆tn−1

)Pn−1

eiLn
∆tn
2 (2.36)

∆tn = ∆tn−1Pn−1

ei(
∑n−1

i=0 Li)∆tn−1 = eiLn−1
∆tn−1

2

(

ei(
∑n−2

i=0 Li)∆tn−2

)Pn−2

eiLn−1
∆tn−1

2 (2.37)

∆tn−1 = ∆tn−2Pn−2

....

ei(L0+L1+L2)∆t2 = eiL2
∆t2
2

(

ei(L1+L0)∆t1
)P1

eiL2
∆t2
2 (2.38)

∆t2 = ∆t1P1

ei(L0+L1)∆t1 = eiL1
∆t1
2

(

eiL0∆t0
)P0

eiL1
∆t1
2 (2.39)

∆t1 = ∆t0P0

where ∆ti is the generic integration time steps selected according to the time scale of the i-th force Fi. We
now substitute Eq. (2.39) into Eq. (2.38) and so on climbing the whole hierarchy until Eq. (2.36). The
resulting multiple time steps symplectic and reversible propagator is then

eiL∆tn = eFn
∂
∂p∆tn

(

eFn−1
∂
∂p

∆tn−1
2 ..

..
(

eF0
∂
∂p

∆t0
2 eq̇

∂
∂q∆t0eF0

∂
∂p

∆t0
2

)P0

.. eFn−1
∂
∂p

∆tn−1
2

)Pn−1

eFn
∂
∂p

∆tn
2

(2.40)

2When the large step size at which the intermittent impulses are computed matches the period of natural oscillations in the
system, one can detect instabilities of the numerical integration due to resonance effects. Resonances occurs for pathological
systems such as fast harmonic oscillators in presence of strong, albeit slowly varying, forces [70] and can be cured easily by
tuning the time steps in the multilevel integration. However, for large and complex molecules it is unlikely that an artificial
resonance could sustain for any length of time [70]

3In the original force breakup [19, 20], the energy is not generally conserved during the unperturbed motion of the inner
reference systems but only at the end of the full macro-step. Force breakup and potential breakup have been proved to
produce identical trajectories [23]. With respect to the force the breakup, implementation of the potential breakup is slightly
more complicated when dealing with intermolecular potential separation, but the energy conservation requirement in any
defined reference system makes the debugging process easier.

Symplectic and Reversible Integrators 15

The integration algorithm that can be derived from the above propagator was first proposed by Tuckerman,
Martyna and Berne and called r–RESPA, reversible reference system propagation algorithm [20]

2.4 Constraints and r–RESPA

The r-RESPA approach makes unnecessary to resort to the SHAKE procedure [10, 11] to freeze some
fast degrees of freedom. However the SHAKE and r-RESPA algorithms are not mutually exclusive and
sometimes it might be convenient to freeze some degrees of freedom while simultaneously using a multi-step
integration for all other freely evolving degrees of freedom. Since r-RESPA consists in a series of nested
velocity Verlet like algorithms, the constraint technique RATTLE [78] used in the past for single time step
velocity Verlet integrator can be straightforwardly applied. In RATTLE both the constraint conditions on
the coordinates and their time derivatives must be satisfied. The resulting coordinate constraints is upheld
by a SHAKE iterative procedure which corrects the positions exactly as in a standard Verlet integration,
while a similar iterative procedure is applied to the velocities at the half time step.

In a multi time step integration, whenever velocities are updated, using part of the overall forces (e.g.
the intermolecular forces), they must also be corrected for the corresponding constraints forces with a
call to RATTLE. This combined RATTLE-r-RESPA procedure has been described for the first time by
Tuckerman and Parrinello [79] in the framework of the Car-Parrinello simulation method. To illustrate
the combined RATTLE-r-RESPA technique in a multi-step integration, we assume a separation of the
potential into two components deriving from intramolecular and intermolecular interactions. In addition,
some of the covalent bonds are supposed rigid, i.e.

da = d(0)a (2.41)

ḋa = 0 (2.42)

equation where a runs over all constrained bonds and d
(0)
a are constants. In the double time integration

(2.34), velocities are updated four times, i.e. two times in the inner loop and two times in the outer
loop. To satisfy (2.41), SHAKE must be called to correct the position in the inner loop. To satisfy (2.42),
RATTLE must be called twice, once in the inner loop and the second time in the outer loop according to
the following scheme

p′
(

∆t1
2

)

= p(0) + F1(0)
∆t1
2

p (∆t1) = RATTLEp

{

p′
(

∆t1
2

)}

DO i=1,n

p′
(

∆t1
2 + i∆t0

2

)

= p
(

∆t1
2 + [i − 1] ∆t0

2

)

+ F0

(

[i− 1] ∆t0
2

)

∆t0
2

p
(

∆t1
2 + i∆t0

2

)

= RATTLEp

{

p′
(

∆t1
2 + i∆t0

2

)}

q′ (i∆t0) = q ([i− 1]∆t0) + p
(

∆t1
2 + i∆t0

2

)

∆t0
m

q (i∆t0) = RATTLEq {q
′ (i∆t0)}

p
(

∆t1
2 + i∆t0

)

= p
(

∆t1
2 + i∆t0

2

)

+ F0 (i∆t0)
∆t0
2

ENDDO

p (∆t1) = p′(∆t1
2) + F1(n∆t0)

∆t1
2 .

(2.43)

Where RATTLEp and RATTLEq represent the constraint procedure on velocity and coordinates, respec-
tively.

2.5 Applications

As a first simple example we apply the double time integrator (2.34) to the NVE simulation of flexible
nitrogen at 100 K.

The overall interaction potential is given by

V = Vintra + Vinter

Where Vinter is the intermolecular potential described by a Lennard-Jones model between all nitrogen
atoms on different molecules [80]. Vintra is instead the intramolecular stretching potential holding together

Symplectic and Reversible Integrators 16

Table 2.1: Energy conservation ratio R for various integrators (see text). The last three entries refer to a velocity Verlet
with bond constraints. < Vi > and < Vm > are the average value of the intra-molecular and intermolecular energies (in
KJ/mole), respectively. CPU is given in seconds per picoseconds of simulation and ∆t in fs. Single time step velocity Verlet
with ∆t = 4.5 fs is unstable.

∆t n R CPU < Vi > < Vm >
0.3 1 0.005 119 0.1912 -4.75

0.6 1 0.018 62 0.1937 -4.75
1.5 1 0.121 26 0.2142 -4.75
4.5 1 - - - -
0.6 2 0.004 59 0.1912 -4.75
1.5 5 0.004 28 0.1912 -4.75
3.0 10 0.005 18 0.1912 -4.75
4.5 15 0.006 15 0.1912 -4.75
6.0 20 0.008 12 0.1912 -4.74
9.0 30 0.012 10 0.1911 -4.74

3.0 - 0.001 14 - -4.74
6.0 - 0.004 8 - -4.75
9.0 - 0.008 6 - -4.74

the two nitrogen atoms of each given molecule. We use here a simple harmonic spring depending on the
molecular bond length rm, namely:

Vi =
1

2

∑

m

k(r − r0)
2,

with r0 and r the equilibrium and instantaneous distance between the nitrogen atoms, and k the force
constant tuned to reproduce the experimental gas-phase stretching frequency [81].

As a measure of the accuracy of the numerical integration we use the adimensional energy conservation
ratio [23, 82, 24, 13]

R =
< E2 > − < E >2

< K2 > − < K >2
(2.44)

where E and K are the total and kinetic energy of the system, respectively. In table 1 we show the energy
conservation ratio R and CPU timings on a IBM-43P/160MH/RS6000 obtained for flexible nitrogen at
100 K with the r-RESPA integrator as a function of n and ∆t1 in Eq. (2.34) and also for single time step
integrators. Results of integrators for rigid nitrogen using SHAKE are also shown for comparison. The
data in Table 1 refer to a 3.0 ps run without velocity rescaling. They were obtained starting all runs from
coordinates corresponding to the experimental Pa3 structure [83, 84] of solid nitrogen and from velocities
taken randomly according to the Boltzmann distribution at 100 K.

The entry in bold refers to the “exact” result, obtained with a single time step integrator with a
very small step size of 0.3 fs. Note that R increases quadratically with the time step for single time
step integrators whereas r-RESPA is remarkably resistant to outer time step size increase. For example r-
RESPA with ∆t1 = 9.0fs and P = 30 (i.e. ∆t0 = 0.3 fs) yields better accuracy on energy conservation than
single time step Velocity Verlet with ∆t = 0.6fs does, while being more than six times faster. Moreover,
r-RESPA integrates all degrees of freedom of the systems and is almost as efficient as Velocity Verlet with
constraints on bonds. It is also worth pointing out that energy averages for all r-RESPA integrators is equal
to the exact value, while at single time step even a moderate step size increase results in sensibly different
averages intra-molecular energies. As a more complex example we now study a cluster of eight single
chain alkanes C24H50. In this case the potential contains stretching, bending and torsional contributions
plus the intermolecular Van-der-Waals interactions between non bonded atoms. The parameter are chosen
according to the AMBER protocol [4] by assigning the carbon and hydrogen atoms to the AMBER types
ct and hc, respectively. For various dynamical and structural properties we compare three integrators,
namely a triple time step r-RESPA (R3) a single time step integrator with bond constraints on X−H (S1)
and a single time step integrator with all bonds kept rigid (S). These three integrators are tested, starting

Symplectic and Reversible Integrators 17

0 500 1000 1500 2000
fs

E
R3
S1
S

10
0

kj
/m

ol
e

Figure 2.1: Time record of the torsional potential energy at about 300 K for a cluster of eight molecules of C24H50 obtained
using three integrators: solid line integrator E; circles integrator R3; squares integrator S1; diamonds integrator S (see text)

from the same phase space point, against a single time step integrator (E) with a very small time step
generating the “exact” trajectory. In Fig. 2.1 we show the time record of the torsional potential energy.
The R3 integrator generates a trajectory practically coincident with the “exact” trajectory for as long as
1.5 ps. The single time step with rigid X−H bonds also produces a fairly accurate trajectory, whereas the
trajectory generated by S quickly drifts away from the exact time record. In Fig. 2.2 we show the power
spectrum of the velocity auto-correlation function obtained with R3, S1 and S. The spectra are compared
to the exact spectrum computed using the trajectories generated by the accurate integrator E. We see that
R3 and S1 generates the same spectral profile within statistical error. In contrast, especially in the region
above 800 wavenumbers, S generates a spectrum which differs appreciably from the exact one. This does
not mean, of course, that S is unreliable for the “relevant” torsional degrees of freedom. Simply, we cannot
a priori exclude that keeping all bonds rigid will not have an impact on the equilibrium structure of the
alkanes molecules and on torsional dynamics. Actually, in the present case, as long as torsional motions
are concerned all three integrators produce essentially identical results. In 20 picoseconds of simulation,
R3 S1 and S predicted 60, 61, 60 torsional jumps, respectively, against the 59 jumps obtained with the
exact integrator E. According to prescription of Ref. [85], in order to avoid period doubling, we compute
the power spectrum of torsional motion form the auto-correlation function of the vector product of two
normalized vector perpendicular to the dihedral planes. Rare events such as torsional jumps produce large
amplitudes long time scale oscillations in the time auto-correlation function and therefore their contribution
overwhelms the spectrum which appears as a single broaden peak around zero frequency. For this reason
all torsions that did undergo a barrier crossing were discarded in the computation of the power spectrum.
The power spectrum of the torsional motions is identical for all integrators within statistical error when
evaluated over 20 ps of simulations.

From these results it can be concluded that S1 and R3 are very likely to produce essentially the same
dynamics for all “relevant” degrees of freedom. We are forced to state that also the integrator S appears
to accurately predict the structure and overall dynamics of the torsional degrees of freedom at least for the
20 ps time span of this specific system.4 Since torsions are not normal coordinates and couple to higher

4For example, our conclusions on the effect of SHAKE onto torsional motions for highly flexible systems differs form the

Symplectic and Reversible Integrators 18

0 500 1000 1500
fs

E
R3
S1
S

V
A

C
F

0 100 200 300 400
wavenumbers

0.00

0.01

0.02

N
or

m
al

iz
e

in
te

ns
ity

E
R3
S1
S

Figure 2.2: Power spectra of the velocity auto-correlation function (left) and of the torsional internal coordinates (right)
at 300 K for a cluster of 8 C24H50 molecules calculated with integrators E, R3, S1 and S (see text) starting from the same
phase space point

frequency internal coordinates such as bending and stretching, the ability of the efficient S integrator of
correctly predicting low frequency dynamics and structural properties cannot be assumed a priori and must
be, in principle, verified for each specific case. We also do not know how the individual eigenvectors are
affected by the integrators and, although the overall density for S and S1 appears to be the same, there
might be considerable changes in the torsional dynamics. R3 does not require any assumption, is accurate
everywhere in the spectrum (see Fig. 2.2) and is as efficient as S. For these reasons R3, or a multi-step
version of the equally accurate S1, must be the natural choice for the simulation of complex systems using
all-atoms models

results published by Watanabe and Karplus [82] for another flexible system. i.e. met-enkephalin in vacuo. They compared
SHAKE on X−H against full flexibility and found that the power spectrum of torsional degrees of freedom differs significantly.
For met-enkephalin their spectrum, evaluated on a 10 ps time span, shows a single strong peak at 10 or 40 wavenumbers,
with and without constraints, respectively. The different behavior of the constrained and totally flexible system might be
ascribed in their case to the the specificity of the system and/or the potential, although this seems unlikely [24]. In their study,
on the other hand, we must remark the unusual shape of the spectral torsional profile with virtually no frequencies above
100 wavenumbers and with strong peaks suspiciously close the minimum detectable frequency according to their spectral
resolution.

Chapter 3

Multiple Time Steps Algorithms for
the Isothermal-Isobaric Ensemble

The integrators developed in the previous section generates dynamics in the microcanonical ensemble where
total energy, number of particles and volume are conserved. The derivation based on the Liouvillean and the
corresponding propagator, however lends itself to a straightforward generalization to non microcanonical
ensembles. Simulations of this kind are based on the concept of extended system and generate trajectories
that sample the phase space according to a target distribution function. The extended system method is
reviewed in many excellent textbooks and papers [12, 86, 87, 88, 89, 90, 91, 25] to which we refer for a
complete and detailed description. Here it suffices to say that the technique relies on the clever definition
of a modified or extended Lagrangian which includes extra degrees of freedom related to the intensive
properties (e.g. pressure or temperature) one wishes to sample with a well defined distribution function.
The dynamics of the extended system is generated in the microcanonical ensemble with the true n degrees
of freedom and, additionally, the extra degrees of freedom related to the macroscopic thermodynamic
variables. With an appropriate choice, the equations of motion of the extended system will produce
trajectories in the extended phase space generating the desired equilibrium distribution function upon
integration over the extra (extended) variables. There are several extended system techniques corresponding
to various ensembles, e.g. constant pressure in the NPH ensemble simulation with isotropic [92] and
anisotropic [93] stress, constant temperature simulation [94] in the NVT ensemble and isothermal–isobaric
simulation [95] in the NPT ensemble. As we shall see, the dynamic of the real system generated by the
extended system method is never Hamiltonian. Hence, symplecticness is no longer an inherent property of
the equations of motion. Nonetheless, the Liouvillean formalism developed in the preceding section, turns
out to be very useful for the derivation of multiple time step reversible integrators for a general isothermal–
isobaric ensemble with anisotropic stress, or NPT1. This extended system is the most general among all
non microcanonical simulations: The NPT, NPH the NVT and even NVE ensemble may be derived from
this Lagrangian by imposing special constraints and/or choosing appropriate parameters [25, 27]

3.1 The Parrinello-Rahman-Nosé Extended Lagrangian

The starting point of our derivation of the multilevel integrator for the NPT ensemble is the Parrinello-
Rahman-Nosé Lagrangian for a molecular system with N molecules or groups 2 each containing ni atoms
and subject to a potential V . In order to construct the Lagrangian we define a coordinate scaling and a

1When P is not in boldface, we imply that the stress is isotropic
2For large molecules it may be convenient to further subdivide the molecule into groups. A group, therefore encompasses

a conveniently chosen subset of the atoms of the molecule

19

Multiple Time Steps Algorithms 20

velocity scaling, i.e.

rikα = Riα + likα =
∑

β

hαβSiβ + likα (3.1)

˙Riα
′

= ˙Riαs (3.2)

˙likα
′

= ˙likαs

Here, the indices i and k refer to molecules and atoms, respectively, while Greek letters are used to label
the Cartesian components. rikα is the α component of the coordinates of the k-th atom belonging to the
i-th molecule; Riα is the center of mass coordinates; Siβ is the scaled coordinate of the i-th molecular
center of mass. likα is the coordinate of the k-th atom belonging to the i-th molecule expressed in a frame
parallel at any instant to the fixed laboratory frame, but with origin on the instantaneous molecular center
of mass. The set of likα coordinates satisfies 3N constraints of the type

∑ni

k=1 likα = 0.
The matrix h and the variable s control the pressure an temperature of the extended system, respec-

tively. The columns of the matrix h are the Cartesian components of the cell edges with respect to a fixed
frame. The elements of this matrix allow the simulation cell to change shape and size and are sometimes
called the “barostat” coordinates. The volume of the MD cell is related to h through the relation

Ω = det(h). (3.3)

s is the coordinates of the so-called “Nosé thermostat” and is coupled to the intramolecular and center of
mass velocities,

We define the “potentials” depending on the thermodynamic variables P and T

VP = P det(h)

VT =
g

β
ln s. (3.4)

Where P is the external pressure of the system, β = kBT , and g is a constant related to total the number
of degrees of freedom in the system. This constant is chosen to correctly sample the NPT distribution
function.

The extended NPT Lagrangian is then defined as

L =
1

2

N
∑

i

Mis
2Ṡt

ih
thṠi +

1

2

∑

ik

miks
2l̇tik l̇ik +

1

2
Ws2tr(ḣtḣ) (3.5)

+
1

2
Qṡ2 − V − PextΩ−

g

β
ln s (3.6)

The arbitrary parameters W and Q are the “masses” of the barostat and of the thermostats, respectively3.
They do not affect the sampled distribution function but only the sampling efficiency [26, 94, 95]. For a
detailed discussion of the sampling properties of this Lagrangian the reader is referred to Refs. [91, 27].

3.2 The Parrinello-Rahman-Nosé Hamiltonian and the Equations

of Motion

In order to derive the multiple time step integration algorithm using the Liouville formalism described in
the preceding sections we must switch to the Hamiltonian formalism. Thus, we evaluate the conjugate
momenta of the coordinates Siα, likα, hαβ and s by taking the derivatives of the Lagrangian in Eq. (3.6)
with respect to corresponding velocities, i.e.

Ti = MiGs2Ṡi (3.7)

pik = miks
2l̇ik (3.8)

Ph = s2W ḣ (3.9)

ps = Qṡ. (3.10)

3W has actually the dimension of a mass, while Q has the dimension of a mass time a length squared

Multiple Time Steps Algorithms 21

Where we have defined the symmetric matrix

G = hth (3.11)

The Hamiltonian of the system is obtained using the usual Legendre transformation [72]

H(p, q) =
∑

q̇p− L(q, q̇). (3.12)

One obtains

H =
1

2

N
∑

i

ṪiG
−1Ṫ

Ms2
+

1

2

∑

ik

pt
ikpik

miks2
+

1

2

tr (Pt
hPh)

s2W
+

p2s
2Q

+ V + PΩ +
g ln s

β
(3.13)

In the extended systems formulation we always deal with real and virtual variables. The virtual variables in
the Hamiltonian (3.13) are the scaled coordinates and momenta while the unscaled variables (e.g Ri = hSi

or p′ikα = pikα/s are the real counterpart. The variable s in the Nosé formulation plays the role of a time
scaling [86, 80, 94]. The above Hamiltonian is given in terms of virtual variables and in term of a virtual
time and is indeed a true Hamiltonian function and has corresponding equation of motions that can be
obtained applying Eq. (2.3) with x ≡ Siα, likα, hαβ, s, Tiα, pikα, παβ , ps in a standard fashion. Nonetheless,
the equations of motions in terms of these virtual variable are inadequate for several reasons since for
example one would deal with a fluctuating time step [86, 94]. It is therefore convenient to work in terms of
real momenta and real time. The real momenta are related to the virtual counterpart through the relations

Tiα → Tiα/s (3.14)

pikα → pikα/s (3.15)

(Ph)αβ → (Ph)αβ /s (3.16)

ps → ps/s (3.17)

(3.18)

It is also convenient [26] to introduce new center of mass momenta as

Pi ≡ G−1Ti. (3.19)

such that the corresponding velocities may be obtained directly without the knowledge of the “coordinates”
h in G4, namely

Ṡi =
Pi

M
. (3.20)

Finally, a real time formulation and a new dynamical variable η are adopted:

t → t/s (3.21)

η ≡ lns (3.22)

The equations of motions for the newly adopted set of dynamical variables are easily obtained from the
true Hamiltonian in Eq. (3.13) and then using Eqs. (3.14-3.22) to rewrite the resulting equations in terms
of the new momenta. In so doing, we obtain:

l̇ik =
pik

mik
, Ṡi =

Pi

Mi
, ḣ =

Ph

W
, η̇ =

pη
Q

(3.23)

ṗik = fcik −
pη
Q

pik, (3.24)

Ṗi = h−1Fi −
←→
G−1

←̇→
GPi −

pη
Q

Pi, (3.25)

←̇→
P h =

(

←→
V +

←→
K − h−1Pext deth

)

−
pη
Q

Ph, (3.26)

ṗη = Fη, (3.27)

4This allows to maintain Verlet-like breakup while integrating the equation of motions [26].

Multiple Time Steps Algorithms 22

It can be verified that the conserved quantity H is associated with the above equations of motion,
namely

H =
1

2

N
∑

i=1

Pt
i

←→
GPi

Mi
+

1

2

N
∑

i=1

ni
∑

k=1

pt
ikpik

mik
+

1

2

tr (Pt
hPh)

W
+

+
1

2

pηpη
Q

+ V + Pext deth+ gkBTη. (3.28)

The atomic force fcik = ∂V
∂rikα

− mik

Mi
Fi includes a constraint force contribution which guarantees that the

center of mass in the intramolecular frame of the likα coordinates remains at the origin.
←→
V and

←→
K are

the virial and ideal gas contribution to the internal pressure tensor Pint =
←→
V +

←→
K and they are defined

as5

←→
V =

N
∑

i=1

FiS
t
i

←→
K =

N
∑

i=1

Mi

(

hṠi

)

Ṡt
i. (3.29)

Finally Fη is the force driving the Nosé thermostat

Fη =
1

2

N
∑

i=1

MiṠ
t
i

←→
GṠi +

1

2

N
∑

i=1

ni
∑

k=1

pt
ikpik

mik
− gkBT, (3.30)

with g equal to the number of all degrees of freedom Nf including those of the barostat6.
Eqs. (3.14-3.21) define a generalized coordinates transformation of the kind of Eq. (2.4). This transfor-

mation is non canonical, i.e. the Jacobian matrix of the transformation from the virtual coordinates does
not obey Eq. (2.8). This means that H in terms of the new coordinates Eq. (3.28) is “only” a constant
of motion, but is no longer a true Hamiltonian: application of Eq. (2.1) does not lead to Eqs. (3.23-3.27).
Simulations using the real variables are not Hamiltonian in nature in the sense that the phase space of the
real variables is compressible [96] and that Liouville theorem is not satisfied [91]. This “strangeness” in
the dynamics of the real variables in the extended systems does not of course imply that the sampling of
the configurational real space is incorrect. To show this, it suffices to evaluate the partition function for a
microcanonical distribution of the kind δ(H− E), with H being given by Eq. (3.28). The Jacobian of the
transformation of Eqs. (3.14-3.22) must be included in the integration with respect to the real coordinates
when evaluating the partition function for the extended system. If the equations of motion in terms of the
transformed coordinates are known, this Jacobian, J , can be readily computed from the relation [73]:

dJ

dt
= −J

(

∂

∂y
· ẏ

)

. (3.31)

Where y has the usual meaning of phase space vector containing all independent coordinates and momenta
of the systems. Inserting the equations of motion of Eq. (3.27) into Eq. (3.31) and integrating by separation
of variables yields

J = eNfη [deth]6N . (3.32)

Using (3.32) and integrating out the thermostat degrees of freedom, the partition function can be easily
shown [91, 97] to be equivalent to that that of NPT ensemble, i.e.

∆NPT ∝

∫

dhe−βPtext det(h)Q(h) (3.33)

5 In presence of bond constraints and if the scaling is group-based instead of molecular based, these expression should
contain a contribution from the constraints forces. Complications due to the constraints can be avoided altogether by defining

groups so that no two groups are connected through a constrained bond [27]. In that case
←→
V does not include any constraint

contribution.
6The thermostat degree of freedom must be included [86, 91] in the count when working in virtual coordinates. Indeed in

Eq. (3.13) we have g = Nf + 1

Multiple Time Steps Algorithms 23

with Q(h) being the canonical distribution of a system with cell of shape and size define by the columns
of h.7

3.3 Equivalence of Atomic and Molecular Pressure

The volume scaling defined in Eq. (3.1) is not unique. Note that only the equation of motion for the center
of mass momentum, Eq. (3.25), has a velocity dependent term that depends on the coordinates of the
barostat through the matrix G defined in Eq. (3.11). The atomic momenta, Eq. (3.24), on the contrary,
are not coupled to the barostat. This fact is also reflected in the equations of motion for the barostat
momenta, Eq. (3.26), which is driven by the internal pressure due only to the molecular or group center of
masses. In defining the extended Lagrangian one could as well have defined an atomic scaling of the form

rikα =
∑

β

hαβsiαk. (3.34)

Atomic scaling might be trivially implemented by eliminating the kinetic energy, which depends on
the ˙likα velocities, from the starting Lagrangian (3.6) and replacing the term 1

2

∑N
i Mis

2Ṡt
ih

thṠi with
1
2

∑

ik miks
2ṡtikh

thṡik. The corresponding equations of motions for atomic scaling are then

ṙik =
pik

mik
, ḣ =

Ph

W
, η̇ =

pη
Q

(3.35)

ṗik = h−1ṗik −
←→
G−1

←̇→
Gṗik −

pη
Q

ṗik, (3.36)

←̇→
P h =

(

←→
V +

←→
K − h−1Pext deth

)

−
pη
Q

Ph, (3.37)

ṗη = Fη (3.38)

where the quantities V ,K,Fη depend now on the atomic coordinates

←→
V =

N
∑

i=1k

fiks
t
ik

←→
K =

N
∑

i=1

Mi (hsik) s
t
ik (3.39)

Fη =
1

2

N
∑

i=1

ni
∑

k=1

pt
ikpik

mik
− gkBT. (3.40)

In case of atomic, Eq. (3.34), or molecular scaling, Eq. (3.1), the internal pressure entering in Eqs.
(3.26,3.37) is then

Pint = 〈Patom〉 =

〈

1

3V

∑

i

∑

k

(

p2
ik

mik
+ rik • fik

)

〉

(3.41)

Pint = 〈Pmol〉 =

〈

1

3V

∑

i

(

P2
i

M i
+Ri • Fi

)

〉

(3.42)

7 Actually in ref. [91, 27] is pointed out that the virial theorem implied by the distribution (3.33) is slightly different from
the exact virial in the NPT ensemble. Martyna et al. [91] proposed an improved set of equations of motion that generates a
distribution satisfying exactly the virial theorem.

Multiple Time Steps Algorithms 24

respectively. Where the molecular quantities can be written in term of the atomic counterpart according
to:

Ri =
1

M i

∑

k

mikrik (3.43)

Pi =
∑

k

pik (3.44)

Fi =
∑

k

fik (3.45)

The equation of motion for the barostat in the two cases, Eqs.(3.37, 3.26), has the same form whether
atomic or molecular scaling is adopted. The internal pressure in the former case is given by Eq. (3.41) and
in the latter is given by Eq. (3.42). The two pressures, Eqs. (3.41,3.42), differ instantaneously. Should the
difference persist after averaging, then it would be obvious that the equilibrium thermodynamic state in the
NPT ensemble depends on the scaling method. The two formulas (3.41,3.42) are fortunately equivalent.
To prove this statement, we closely follow the route proposed by H. Berendsen and reported by Ciccotti
and Ryckaert [98] and use Eqs. (3.43-3.45) to rearrange Eq. (3.42). We obtain

∑

i

〈Ri • Fi〉 =
∑

i

1

M i

∑

kl

〈mikrik • fil〉. (3.46)

Adding and subtracting mikril • fil, we get

=
∑

i

1

M i

∑

kl

〈mik(rik − ril) • fil +mikril • fil〉 (3.47)

which can be rearranged as

=
∑

i

1

Mi

{

∑

kl

[

1

2
〈(rik − ril) • (mifil −mjfik)〉

]

+
∑

l

〈ril • fil〉

}

(3.48)

using the newton law fik = mikaik, where aik is the acceleration, we obtain

=
∑

i

1

Mi

{

∑

kl

[

1

2
〈mjmi(rik − ril) • (ail − aik)〉

]

+
∑

l

〈ril • fil〉

}

. (3.49)

The first term in the above equation can be decomposed according to:

(rik − ril) • (ail − aik) =
d

dt
[(rik − ril) • (vil − vik)] + (vil − vik)

2 (3.50)

The first derivative term on the right hand side is zero rigorously for rigid molecules or rigid group and
is zero on average for flexible molecules or groups, assuming that the flexible molecules or groups do not
dissociate. This can be readily seen in case of ergodic systems, by evaluating directly the average of this
derivatives as

〈
d

dt
[(rik − ril) • (vil − vik)]〉 = lim

τ→∞

1

τ

∫ ∞

0

d

dt
[(rik − ril) • (vil − vik)] dt (3.51)

= lim
τ→∞

1

τ
[(rik(τ)− ril(τ)) • (vil(τ) − vik(τ)) + C] (3.52)

So if the quantity rikl(τ) • vilk(τ) remains bounded (which is true if the potential is not dissociative, since
k, l refers to the same molecule i), the average in Eq. (3.52) is zero8. Thus, we can rewrite the average of
Eq. (3.49) as

〈
∑

i

Ri • Fi〉 =
∑

i

1

2Mi

∑

kl

mikmil〈(vil − vik)
2〉+

∑

ik

〈rik • fik〉. (3.53)

8The statement the molecule of group does not dissociate is even too restrictive. It is enough to say that the quantity
(3.52) remains bound.

Multiple Time Steps Algorithms 25

The first term on the right hand side of the above equation can be further developed obtaining the trivial
identity:

∑

kl

mikmil〈(vil − vik)
2〉 =

∑

kl

mikmil〈v
2
ik〉+

∑

kl

mikmil〈v
2
il〉 −

−
∑

kl

2mikmil〈vil • vik〉 (3.54)

= 2Mi

∑

k

mik〈v
2
ik〉 − 2〈P2

i 〉 (3.55)

Substituting Eq. (3.55) in Eq. (3.53) we get

〈
∑

i

Ri • Fi〉 =
∑

ik

mik〈v
2
ik〉 −

1

Mi
〈P2

i 〉+
∑

ik

〈rik • fik〉 (3.56)

Substituting Eq. (3.56) into Eq. (3.42) leads speedily to (3.41) which completes the proof. As a consequence
of the above discussion, it seems likely that both the equilibrium and non equilibrium properties of the
MD system are not affected by coordinate scaling. We shall see later that this is actually the case.

3.4 Liouvillean Split and Multiple Time Step Algorithm for the
NPT Ensemble

We have seen in section 2.2 that the knowledge of the Liouvillean allows us to straightforwardly derive a
multi-step integration algorithm. Thus, for simulation in the NPT ensemble, the Liouvillean iL = ẏ∇y

is readily available from the equations of motion in (3.23-3.27). For sake of simplicity, to build our NPT
multiple time step integrator we assume that the system potential contains only a fast intramolecular V0

term and a slow intermolecular term V1, as discussed in Sec. 2.3. Generalization to multiple intra and
inter-molecular components is straightforward.

We define the following components of the NPT Liouvillean

iLx = −
∑

i

Pi
pη
Q
∇Pi −

∑

ik

pik
pη
Q
∇pik

−
∑

αβ

(Ph)αβ
pη
Q

(∇Ph
)αβ (3.57)

iLy = Fη∇pη (3.58)

iLz =
∑

i

←→
G−1

←̇→
GPi∇Pi (3.59)

iLu =
∑

αβ

(

←→
K − h−1Pext deth

)

αβ
(∇Ph

)αβ (3.60)

iLs =
∑

i

Ji∇Pi +
∑

ik

fcik∇pik
+
∑

αβ

(

←→
V

)

αβ
(∇Ph

)αβ (3.61)

iG0 =
∑

i

Pi

Mi
∇Si +

∑

ik

pik

mik
∇lik +

∑

αβ

(Ph)αβ
W

(∇h)αβ +

+
pη
Q
∇η −∇likV0∇pik

, (3.62)

where in Eq. (3.61) the scaled forces Fi have been replaced by its real space counterparts, i.e. Ji = h−1Fi.
The atomic scaling version of this Liouvillean breakup is derived on the basis of Eqs. (3.38). One

Multiple Time Steps Algorithms 26

obtains

iLx = −
∑

ik

pik
pη
Q
∇pik

−
∑

αβ

(Ph)αβ
pη
Q

(∇Ph
)αβ (3.63)

iLy = Fη∇pη (3.64)

iLz =
∑

ik

←→
G−1

←̇→
Gpik∇pik

(3.65)

iLu =
∑

αβ

(

←→
K − h−1Pext deth

)

αβ
(∇Ph

)αβ (3.66)

iLs =
∑

ik

jik∇pik
+
∑

αβ

(

←→
V

)

αβ
(∇Ph

)αβ (3.67)

iG0 =
∑

ik

pik

mik
∇lik +

∑

αβ

(Ph)αβ
W

(∇h)αβ +

+
pη
Q
∇η −∇likV0∇pik

, (3.68)

where jik = h−1fik and V ,K,Fη are given in Eqs. (3.39,3.40). For the time scale breakup in the NPT
ensemble we have the complication of the extra degrees of freedom whose time scale dynamics can be
controlled by varying the parameter Q and W . Large values of Q and W slow down the time dynamics
of the barostat and thermostat coordinates. The potential V determines the time scale of the iG0 term
(the fast component) and of the iLs contribution (the slow component). All other sub-Liouvilleans either
handle the coupling of the true coordinates to the extra degrees of freedom (iLx expresses the coupling
of all momenta (including barostat momenta) to the thermostat momentum, while iLz is a coupling term
between the center of mass momenta and the barostat momentum), or drive the evolution of the extra
coordinates of the barostat and thermostat (iLy and iLu). The time scale dynamics of these terms depends
not only on the potential subdivision and on the parameters W and Q, but also on the type of scaling [27].

When the molecular scaling is adopted the dynamics of the virial term
←→
V contains contributions only from

the intermolecular potential since the barostat is coupled only to the center of mass coordinates (see Eq.
(3.29)). Indeed, the net force acting on the molecular center of mass is independent on the intramolecular
potential, since the latter is invariant under rigid translation of the molecules. When atomic scaling or

group (i.e. sub-molecular) scaling is adopted, the virial
←→
V (see Eq. (3.39)) depends also on the fast

intramolecular such as stretching motions. In this case the time scale of the barostat coordinate is no
longer slow, unless the parameter W is changed. For standard values of W, selected to obtain an efficient
sampling of the NPT phase space [99, 80], the barostat dependent Liouvilleans, Eqs. (3.60,3.59), have time
scale dynamics comparable to that of the intramolecular Liouvillean iG0 and therefore must be associated
with this term9.

Thus, the molecular split of the Liouvillean is hence given by

iL1 = iLx + iLy + iLz + iLu + iLs

iL0 = iG0 (3.69)

whereas the atomic split is

iL1 = iLx + iLy + iLs

iL0 = iG0 + iLz + iLu (3.70)

For both scaling, a simple Hermitian factorization of the total time propagator eiLt yields the double time
discrete propagator

eiL1+iL0 = eiL1∆t1/2(eiL0∆t0)neiL1∆t1/2 (3.71)

9Similar considerations hold for the thermostat coordinate which in principle depends on the kinetic energy of all degrees
of freedom, modulated hence by the fast motion also. In this case, however, the value of the thermostat inertia parameter Q
can be chosen to slow down the time scale of the η coordinates without reducing considerably the sampling efficiency.

Multiple Time Steps Algorithms 27

where ∆t0, the small time step, must be selected according to the intramolecular time scale whereas ∆t1,
the large time step, must be selected according to the time scale of the intermolecular motions. We already
know that the propagator (3.71) cannot generate a symplectic. The alert reader may also have noticed that
in this case the symmetric form of the multiple time step propagator Eq. (3.71) does not imply necessarily
time reversibility. Some operators appearing in the definition of L1 (e.g. iLz and iLs) for the molecular
scaling and in the definitions of iL1 and iL0 for the atomic scaling are in fact non commuting. We have
seen in section 2.2 that first order approximation of non commuting propagators yields time irreversible
algorithms. We can render the propagator in Eq. (3.71) time reversible by using second order symmetric
approximant (i.e. Trotter approximation) for any two non commuting operators. For example in the case
of the molecular scaling, when we propagate in Eq. (3.71) the slow propagator eiL1∆t/2 for half time step,
we may use the following second order O(∆t3) split

eiL1
∆t1
2 ≃ eiLy

∆t1
4 eiLz

∆t1
2 eiLy

∆t1
4 eiLx

∆t1
4 ei(Ls+Lu)

∆t1
2 eiLx

∆t1
4 (3.72)

An alternative simpler and equally accurate approach when dealing with non commuting operators is
simply to preserve the unitarity by reversing the order of the operators in the first order factorization of
the right and left operators of Eq. (3.71) without resorting to locally second order O(∆t3) approximation
like in Eq. (3.72). Again for the molecular scaling, this is easily done by using the approximant

(

eiL1
∆t1
2

)

left
= eiLx

∆t1
2 eiLy

∆t1
2 eiLz

∆t1
2 eiLu

∆t1
2 eiLs

∆t1
2 (3.73)

for the left propagator, and
(

eiL1
∆t1
2

)

right
= eiLs

∆t1
2 eiLu

∆t1
2 eiLz

∆t1
2 eiLy

∆t1
2 eiLx

∆t1
2 (3.74)

for the rightmost propagator. Note that
(

eiL1
∆t1
2

)−1

left
=
(

eiL1
∆t1
2

)

right
(3.75)

Inserting these approximations into (3.71) the overall integrator is found to be time reversible and second
order. Time reversible integrators are in fact always even order and hence at least second order [71, 68].
Therefore the overall molecular and atomic (or group) discrete time propagators are given by

eiLmol∆t1 = eiLs
∆t1
2 eiLu

∆t1
2 eiLz

∆t1
2 eiLy

∆t1
2 eiLx

∆t1
2 (eiG0∆t0)n ×

× eiLx
∆t1
2 eiLy

∆t1
2 eiLz

∆t1
2 eiLu

∆t1
2 eiLs

∆t1
2 (3.76)

eiLatom∆t1 = eiLs
∆t1
2 eiLy

∆t1
2 eiLx

∆t1
2 ×

× (eiLu∆t0/2eiLz∆t0/2eiG0∆t0eiLz∆t0/2eiLu∆t0/2)n ×

× eiLx
∆t1
2 eiLy

∆t1
2 eiLs

∆t1
2 (3.77)

The propagator eiG0∆t0 , defined in Eq. (3.62), is further split according to the usual velocity Verlet breakup
of Eq. (2.22). Note that in case of molecular scaling the “slow” coordinates (S, h, η) move with constant
velocity during the n small times steps since there is no “fast” force acting on them in the inner integration.
The explicit integration algorithm may be easily derived for the two propagators in Eqs. (3.76) and (3.77)
using the rule in Eq. (2.23) and its generalization:

eay∇yf (y) = f (yea)

e
←→a y∇yf (y) = f

(←→
eay

)

(3.78)

Where a and ←→a are a scalar and a matrix, respectively. The exponential matrix
←→
ea on the right hand side

of Eq. (3.78) is obtained by diagonalization of ←→a .
As stated before the dynamics generated by Eqs. (3.23-3.27) or (3.35-3.38) in the NPT ensemble is

not Hamiltonian and hence we cannot speak of symplectic integrators [100] for the t-flow’s defined by Eqs.
(3.76, 3.77). The symplectic condition Eq. (2.8) is violated at the level of the transformation (3.14-3.22)
which is not canonical. However, the algorithms generated by Eqs. (3.76,3.77) are time reversible and
second order like the velocity Verlet. Several recent studies have shown [26, 25, 27] that these integrators
for the non microcanonical ensembles are also stable for long time trajectories, as in case of the symplectic
integrators for the NVE ensemble.

Multiple Time Steps Algorithms 28

3.5 Group Scaling and Molecular Scaling

We have seen in section 3.3 that the center of mass or molecular pressure is equivalent to the atomic
pressure. The atomic pressure is the natural quantity that enters in the virial theorem [12] irrespective of
the form of the interaction potential among the particles. So, in principle it is safer to adopt atomic scaling
in the extended system constant pressure simulation. For systems in confined regions, the equivalence
between atomic or true pressure and molecular pressure (see sec. 3.3) holds for any definition of the
molecular subsystem irrespective of the interaction potentials. In other words we could have defined
virtual molecules made up of atoms selected on different real molecules. We may expect that, as long
as the system, no matter how its unities or particles are defined, contains a sufficiently large number
of particles, generates a distribution function identical to that generated by using the “correct” atomic
scaling. From a computational standpoint molecular scaling is superior to atomic scaling. The fast varying
Liouvillean in Eq. (3.70) for the atomic scaling contains the two terms iLz, iLu. These terms are slowly
varying when molecular scaling is adopted and are assigned to the slow part of the Liouvillean in Eq.
(3.69). The inner part of the time propagation is therefore expected to be more expensive for the multiple
time step integration with atomic scaling rather than with molecular scaling. Generally speaking, given the
equivalence between the molecular and atomic pressure, molecular scaling should be the preferred choice
for maximum efficiency in the multiple time step integration.10

For large size molecules, such as proteins, molecular scaling might be inappropriate. The size of the
molecule clearly restricts the number of particles in the MD simulation box, thereby reducing the statistics
on the instantaneous calculated molecular pressure which may show nonphysical large fluctuations. Group
scaling [27] is particularly convenient for handling the simulation of macromolecules. A statistically sig-
nificant number of groups can be selected in order to avoid all problems related to the poor statistics on
molecular pressure calculation for samples containing a small number of large size particles. Notwithstand-
ing, for solvated biomolecules and provided that enough solvent molecules are included, molecular scaling
again yields reliable results. In Ref. [27] Marchi and Procacci showed that the scaling method in the NPT
ensemble does not affect neither the equilibrium structural and dynamical properties nor the kinetic of non
equilibrium MD. For group-based and molecular-based scaling methods in a system of one single molecule
of BPTI embedded in a box of about a 1000 water molecules, they obtained identical results for the system
volume, the Voronoi volumes of the proteins and for the mean square displacement of both solvent and
protein atoms under normal and high pressure.

3.6 Switching to Other Ensembles

The NPT extended system is the most general among all possible extended Lagrangians. All other en-
semble can be in fact obtained within the same computational framework. We must stress [27] that the
computational overhead of the extended system formulation, due to the introduction and handling of the
extra degrees of freedom of the barostat and thermostat variables, is rather modest and is negligible with
respect to a NVE simulation for large samples (Nf > 2000) [26, 25, 27]. Therefore, a practical, albeit
inelegant way of switching among ensembles is simply to set the inertia of the barostat and/or thermostat
to a very large number. This must be of course equivalent to decouple the barostat and/or the thermostat
from the true degrees of freedom. In fact, by setting W to infinity11 in Eqs. (3.23-3.27) we recover the
NV T canonical ensemble equations of motion. Putting instead Q to infinity the NPH equations of motion
are obtained. Finally, setting both W and Q to infinity the NV E equations of motion are recovered.

Switching to the NPT isotropic stress ensemble is less obvious. One may define the kinetic term

10There are also other less material reasons to prefer molecular scaling: atomic scaling and molecular scaling yield dif-
ferent dynamical properties because the equations of motions are different. Dynamical data computed via extended system
simulations should always be taken with caution. With respect to pure Newtonian dynamics, however, the NPT dynamical
evolution is slightly modified by a barostat coupled to the molecular center of mass [26] but is brutally damaged when the
barostat is coupled to the fast degrees of freedom. For example in liquid flexible nitrogen at normal pressure and 100 K,
atomic scaling changes the internal frequency by 20 cm−1 while no changes are detected when the barostat is coupled to the
centers of mass.

11The value of W which works as “infinity” depends on the “force” that is acting on barostat coordinate expressed by
the Eq. (3.25), i.e. on how far the system is from the thermodynamic equilibrium. For a system near the thermodynamic
equilibrium with Nf ≃ 10000 a value of W = 1020 a.m.u. is sufficient to prevent cell fluctuations.

Multiple Time Steps Algorithms 29

associated to barostat in the extended Lagrangian as

K =
1

2

∑

αβ

Wαβs
2ḣ2

αβ (3.79)

such that a different inertia may in principle be assigned to each of 9 extra degrees of freedom of the
barostat. Setting for example

Wαβ = W for α ≤ β (3.80)

Wαβ = ∞ for α > β (3.81)

(3.82)

one inhibits cell rotations [27].
This trick does not work, unfortunately, to change to isotropic stress tensor. In this case, there is

only one independent barostat degrees of freedom, namely the volume of the system. In order to simulate
isotropic cell fluctuations a set of five constraints on the h matrix are introduced which correspond to the
conditions:

hαβ

h11
−

h0
αβ

h0
11

= 0

ḣαβ −
h0
αβ

h0
11

ḣ11 = 0 for α ≤ β (3.83)

with h0 being some reference h matrix. These constraints are implemented naturally in the framework of
the multi time step velocity Verlet using the RATTLE algorithm which evaluates iteratively the constraints
force to satisfy the constraints on both coordinates h and velocities ḣ [27]. In Ref. [27] it is proved that
the phase space sampled by the NPT equations with the addition of the constraints Eq. (3.83) correspond
to that given by NPT distribution function.

Chapter 4

Multiple Time Steps Algorithms For
Large Size Flexible Systems with
Strong Electrostatic Interactions

In the previous sections we have described how to obtain multiple time step integrators given a certain
potential subdivision and have provided simple examples of potential subdivision based on the inter/intra
molecular separation. Here, we focus on the time scale separation of model potentials of complex molecular
systems. Additionally, we provide a general potential subdivision applying to biological systems, as well
as to many other interesting chemical systems including liquid crystals. This type of systems are typically
characterized by high flexibility and strong Coulomb intermolecular interactions. Schematically, we can
then write the potential V as due to two contributions:

V = Vbnd + Vnbn. (4.1)

Here, the “bonded” or intramolecular part Vbnd is fast and is responsible for the flexibility of the system.
The “non bonded” or intermolecular (or intergroup) term Vnbn is dominated by Coulomb interactions.
The aim of the following sections is to describe a general protocol for the subdivision of such forms of the
interaction potential and to show how to obtain reasonably efficient and transferable multiple time step
integrators valid for any complex molecular system.

4.1 Subdivision of the “Bonded” Potential

As we have seen in Sec. 2.3 the idea behind the multiple time step scheme is that of the reference
system which propagates for a certain amount of time under the influence of some unperturbed reference
Hamiltonian, and then undergoes an impulsive correction brought by the remainder of the potential. The
exact trajectory spanned by the complete Hamiltonian is recovered by applying this impulsive correction
onto the “reference” trajectory. We have also seen in the same section that, by subdividing the interaction
potential, we can determine as many “nested” reference systems as we wish. The first step in defining
a general protocol for the subdivision of the bonded potential for complex molecular systems consists in
identifying the various time scales and their connection to the potential. The interaction bonded potential
in almost all popular force fields is given as a function of the stretching, bending and torsion internal
coordinates and has the general form

Vbnd = Vstretch + Vbend + Vtors, (4.2)

30

Electrostatic Interactions 31

where

Vstretch =
∑

Bonds

Kr (r − r0)
2

Vbend =
∑

Angles

Kθ (θ − θ0)
2
.

Vtors =
∑

Dihedrals

Vφ [1 + cos (nφ− γ)] . (4.3)

Here, Kr and Kθ are the bonded force constants associated with bond stretching and angles bending
respectively, while r0 and θ0 are their respective equilibrium values. In the torsional potential, Vtors, φ is
the dihedral angle, while Kφ, n and γ are constants.

The characteristic time scale of a particular internal degrees of freedom can be estimated assuming
that this coordinate behaves like a harmonic oscillator, uncoupled form the rest the other internal degrees
of freedom. Thus, the criterion for guiding the subdivision of the potential in Eq. (4.2) is given by the
characteristic frequency of this uncoupled oscillator. We now give, for each type of degree of freedom,
practical formula to evaluate the harmonic frequency from the force field constants given in Eq. (4.3).

Stretching: The stretching frequencies are given by the well known expression

νs =
1

2π

(

Kr

µ

)(1/2)

, (4.4)

where µ is reduced mass.
Bending: We shall assume for the sake of simplicity that the uncoupled bending frequencies depends

on the masses of the atom 1 and 3 (see Fig. 4.1), that is mass 2 is assumed to be infinity. This turns
out to be in general an excellent approximation for bending involving hydrogen and a good approximation
for external bendings in large molecules involving masses of comparable magnitude. The frequency is
obtained by writing the Lagrangian in polar coordinates for the mechanical system depicted in Fig. 4.1.
The Cartesian coordinates are expressed in terms of the polar coordinates as

x1 = −r12 sin(α/2) y1 = r12 cos(α/2) (4.5)

x3 = r32 sin(α/2) y3 = r32 cos(α/2) (4.6)

where the distance r32 and r12 are constrained to the equilibrium values. The velocities are then

ẋ1 = −r12 cos(α/2)
α̇

2
ẏ1 = −r12sin(α/2)

α̇

2
(4.7)

ẋ3 = r32 cos(α/2)
α̇

2
ẏ3 = −r32sin(α/2)

α̇

2
(4.8)

The Lagrangian for the uncoupled bending is then

L =
1

2

(

m1ẋ
2
1 +m1ẏ

2
1 +m3ẋ

2
3 +m3ẏ

2
3

)

− Vbend (4.9)

=
1

8

(

m1r
2
12 +m2r

2
32)
)

α̇2 −
1

2
kθ(α− α0)

2. (4.10)

The equation of motion d
dt

∂L
α̇ −

∂L
α = 0 for the α coordinate is given by

α̈+
4Kθ

Ib
(α− α0)

2 = 0. (4.11)

Where, Ib = m1r
2
12 +m3r

2
32 is the moment of inertia about an axis passing by atom 3 and perpendicular

to the bending plane. Finally, the uncoupled bending frequency is given by

νb =
1

2π

(

4Kθ

m1r212 +m3r232

)(1/2)

(4.12)

Electrostatic Interactions 32

1 3

2

α

r1 r2
y

x

1

2 3

4

1

2,3

4

θ

x

y
y

z

φ

(b)

(a)

Figure 4.1: Bending and dihedral angles

Torsion: We limit our analysis to a purely torsional system (see Fig. 4.1b) where atoms 2 and 3 are
held fixed, and all bond distances and the angle θ are constrained to their equilibrium values. The system
has only one degree of freedom, the dihedral angle φ driven by the torsional potential Vφ. Again we rewrite
the kinetic energy in terms of the bond distances, the dihedral angle and the constant bend angle θ. For
the kinetic energy, the only relevant coordinates are now those of atoms 1 and 4:

x1 = −d12 cos θ +
d23
2

x4 = d34 cos θ +
d23
2

y1 = d12 sin θ cos(φ/2) y4 = d34 sin θ cos(φ/2)

z1 = −d12 sin θ sin(φ/2) z4 = d34 sin θ sin(φ/2). (4.13)

The Lagrangian in terms of the dihedral angle coordinate is then

L =
1

8
Itφ̇

2 − Vφ [1 + cos (nφ− γ)] , (4.14)

where

It = sin2θ
(

m1d
2
12 +m4d

2
34

)

. (4.15)

Assuming small oscillations, the potential may be approximated by a second order expansion around the
corresponding equilibrium dihedral angle φ0

Vtors =
1

2

(

∂2Vtors

∂φ2

)

φ=φ0

(φ− φ0)
2 =

1

2
Vφn

2(φ− φ0)
2 (4.16)

Substituting (4.16) into Eq . (4.14) and then writing the Lagrange equation of motion for the coordinate
φ, one obtains again a differential equation of a harmonic oscillator, namely

φ̈+
4Vφn

2

It
(φ− φ0) = 0. (4.17)

Thus, the uncoupled torsional frequency is given by

νt =
n

2π

(

4
Vφ

sin2θ (m1d212 +m4d234)

)(1/2)

. (4.18)

For many all-atom force fields, improper torsions [3, 6] are modeled using a potential identical to that
of the proper torsion in Eq. (4.3) and hence in these cases Eq. (4.18) applies also to the improper torsion
uncoupled frequency, provided that indices 1 and 4 refer to the lighter atoms. In figure (4.2) we report the
distribution of frequencies for the hydrated protein Bovine Pancreatin Trypsin Inhibitor (BPTI) using the

Electrostatic Interactions 33

AMBER [4] force field. The distributions might be thought as a density of the uncoupled intramolecular
states of the system. As we can see in the figure there is a relevant degree of overlap for the various
internal degrees of freedom. For example, “slow” degrees of freedom such as torsions may be found up to
600 wavenumber, well inside the “bending” region; these are usually improper or proper torsions involving
hydrogen. It is then inappropriate to assign such “fast” torsions involving hydrogen to a slow reference
system. We recall that in a multiple time simulation the integration of a supposedly slow degree of freedom
with a excessively large time step is enough to undermine the entire simulation. In Fig. 4.2 we also

0 500 1000 1500 2000 2500 3000 3500 4000

Stretching

Bending

Torsion

Improper Torsion

Wavenumbers

Figure 4.2: density of the uncoupled (see text) states for stretching, bending, proper and improper torsion obtained with
the AMBER force field on the protein bovine pancreatic trypsin inhibitor (BPTI). Frequencies were calculated according to
Eqs. (4.4,4.12,4.18)

notice that almost all the proper torsions fall below 350 cm−1. An efficient and simple separation of the
intramolecular AMBER potential [27] assigns all bendings stretching and the improper or proper torsions
involving hydrogen to a “fast” reference system labeled n0 and all proper torsions to a slower reference
system labeled n1. The subdivision is then

Vn0 = Vstretch + Vbend + Vi−tors + V
(h)
p−tors

Vn1 = Vp−tors (4.19)

Where with V
(h)
p−tors we indicate proper torsions involving hydrogen. For the reference system Vn0, the

hydrogen stretching frequencies are the fastest motions and the ∆tn0 time step must be set to 0.2–0.3 fs.
The computational burden of this part of the potential is very limited, since it involves mostly two or three
body forces. For the reference system Vn1, the fastest motion is around 300 cm−1 and the time step ∆tn1
should be set to 1-1.5 fs. The computational effort for the reference system potential Vn1 is more important
because of the numerous proper torsions of complex molecular systems which involve more expensive four
body forces calculations. One may also notice that some of the bendings which were assigned to the n0
reference system fall in the torsion frequency region and could be therefore integrated with a time step much
larger than ∆tn0 ≃ 0.2-0.3. However, in a multiple time step integration, this overlap is just inefficient,
but certainly not dangerous. Indeed, no instability may derive for integrating slow degrees of freedom with
exceedingly small time steps.

Electrostatic Interactions 34

4.2 The smooth particle mesh Ewald method

Before we discuss the non bonded multiple time step separation it is useful to describe in some details one
of the most advanced techniques to handle long range forces. Indeed, this type of non bonded forces are
the most cumbersome to handle and deserve closer scrutiny.

In the recent literature, a variety of techniques are available to handle the problem of long range
interactions in computer simulations of charged particles at different level of approximation [30, 31, 12]. In
this section, we shall focus on the Ewald summation method for the treatment of long range interactions
in periodic systems [32, 33, 101]. The Ewald method gives the exact result for the electrostatic energy of a
periodic system consisting of an infinitely replicated neutral box of charged particles. The method is the
natural choice in MD simulations of complex molecular system with PBC.

The Ewald potential [33] is given by

V ′qd =
1

2

N
∑

ij

qiqj
∑

n

1

|rij + rn|
erfc (α |rij + rn|) (4.20)

Vqr =





1

2πV

∞
∑

m6=0

exp
(

−π2 |m|
2
/α2

)

|m|
2 S (m)S (−m)−

α

π1/2

∑

i

q2i



− Vintra. (4.21)

with

S (m) =

N
∑

i

qi exp (2πim · ri) (4.22)

Vintra =
∑

ij−excl.

qiqj
erf (αrij)

rij
, (4.23)

where, ri is the vector position of the atomic charge qi, rij = ri − rj , rn is a vector of the direct lattice,

erfc(x) = π−1/2
∫∞

x e−t
2

dt is the complementary error function, erf(x) = 1 − erfc(x), V the unit cell
volume, m a reciprocal lattice vector and α is the Ewald convergence parameter. In the direct lattice part,
Eq. (4.20), the prime indicates that intramolecular excluded contacts1 are omitted. In addition, in Eq.
(4.21) the term Vintra subtracts, in direct space, the intra–molecular energy between bonded pairs, which
is automatically included in the right hand side of that equation. Consequently, the summation on i and
j in Eq. (4.23) goes over all the excluded intra-molecular contacts. We must point out that in the Ewald
potential given above, we have implicitly assumed the so-called “tin-foil” boundary conditions: the Ewald
sphere is immersed in a perfectly conducting medium and hence the dipole term on the surface of the Ewald
sphere is zero [33]. For increasingly large systems the computational cost of standard Ewald summation,
which scales with N2, becomes too large for practical applications. Alternative algorithms which scale with
a smaller power of N than standard Ewald have been proposed in the past. Among the fastest algorithms
designed for periodic systems is the particle mesh Ewald algorithm (PME)[34, 35], inspired by the particle
mesh method of Hockney and Eastwood [36]. Here, a multidimensional piece-wise interpolation approach
is used to compute the reciprocal lattice energy, Vqr, of Eq. 4.21, while the direct part, Vqd, is computed
straightforwardly. The low computational cost of the PME method allows the choice of large values of
the Ewald convergence parameter α, as compared to those used in conventional Ewald. Correspondingly,
shorter cutoffs in the direct space Ewald sum Vqd may be adopted. If uj is the scaled fractional coordinate
of the i-th particle, the charge weighted structure factor, S (m) in Eq. (4.22), can be rewritten as:

S (m) =
N
∑

j=1

qj exp

[

2πi

(

m1uj1

K1
+

m2u2j

K2
+

m3u3j

K3

)]

. (4.24)

Where, N is the number of particles, K1,K2,K3 and m1, m2, m3 are integers. The α component of the
scaled fractional coordinate for the i-th atom can be written as:2

uiα = Kαkα · ri, (4.25)

1By excluded contacts we mean interactions between charges on atoms connected by bonds or two bonds apart.
2The scaled fractional coordinate is related to the scaled coordinates in Eqs (3.1,3.34) by the relation siα = 2uiα/Kα.

Electrostatic Interactions 35

where kα, α = 1, 2, 3 are the reciprocal lattice basic vectors.
S (m) in Eq. (4.24) can be looked at as a discrete Fourier transform (FT) of a set of charges placed

irregularly within the unit cell. Techniques have been devised in the past to approximate S (m) with
expressions involving Fourier transforms on a regular grid of points. Such approximations of the weighted
structure factor are computationally advantageous because they can be evaluated by fast Fourier transforms
(FFT). All these FFT–based approaches involve, in some sense, a smearing of the charges over nearby grid
points to produce a regularly gridded charge distribution. The PME method accomplishes this task by
interpolation. Thus, the complex exponential exp(2πimαuiα/Kα), computed at the position of the i-th
charge in Eq. (4.24), are rewritten as a sum of interpolation coefficients multiplied by their values at the
nearby grid points. In the smooth version of PME (SPME) [35], which uses cardinal B-splines in place
of the Lagrangian coefficients adopted by PME, the sum is further multiplied by an appropriate factor,
namely:

exp (2πimαuiα/Kα) = b(mα)
∑

k

Mn(uiα − k) exp (2πimαk/Kα) , (4.26)

where n is the order of the spline interpolation, Mn(uiα−k) defines the coefficients of the cardinal B-spline
interpolation at the scaled coordinate uiα. In Eq. (4.26) the sum over k, representing the grid points, is
only over a finite range of integers, since the functions Mn(u) are zero outside the interval 0 ≤ u ≤ n. It
must be stressed that the complex coefficients b(mi) are independent of the charge coordinates ui and need
be computed only at the very beginning of a simulation. A detailed derivation of the Mn (u) functions and
of the bα coefficients is given in Ref. [35]. By inserting Eq. (4.26) into Eq. (4.24), S (m) can be rewritten
as:

S(m) = b1(m1)b2(m2)b3(m3)F [Q] (m1,m2,m3) , (4.27)

where F [Q] (m1,m2,m3) stands for the discrete FT at the grid point m1,m2,m3 of the array Q (k1, k2, k3)
with 1 ≤ ki ≤ Ki, i = 1, 2, 3. The gridded charge array, Q (k1, k2, k3), is defined as:

Q (k1, k2, k3) =
∑

i=1,N

qiMn (ui1 − k1)Mn (ui2 − k2)Mn (ui3 − k3) (4.28)

Inserting the approximated structure factor of Eq. (4.27) into Eq. (4.21) and using the fact that
F [Q] (−m1,−m2,−m3) = K1K2K3F

−1 [Q] (m1,m2,m3), the SPME reciprocal lattice energy can be then
written as

Vqr =
1

2

K1
∑

m1=1

K2
∑

m2=1

K3
∑

m3=1

B(m1,m2,m3)C(m1,m2,m3)×

× F [Q] (m1,m2,m3)F [Q] (−m1,−m2,−m3) (4.29)

=
1

2

K1
∑

m1=1

K2
∑

m2=1

K3
∑

m3=1

F−1 [Θrec] (m1,m2,m3)F [Q] (m1,m2,m3)×

× K1K2K3F
−1 [Q] (m1,m2,m3), (4.30)

with

B (m1,m2,m3) = |b1(m1)|
2|b2(m2)|

2|b3(m3)|
2 (4.31)

C (m1,m2,m3) = (1/πV) exp(−π2m2/α2)/m2 (4.32)

Θrec = F [BC] . (4.33)

Using the convolution theorem for FFT the energy (4.30) can be rewritten as

Vqr =
1

2

K1
∑

m1=1

K2
∑

m2=1

K3
∑

m3=1

F−1 [Θrec ⋆ Q] (m1,m2,m3)F [Q] (m1,m2,m3) (4.34)

We now use the identity
∑

m F (A)(m)B(m) =
∑

mA(m)F (B)(m) to arrive at

Vqr =
1

2

K1
∑

m1=1

K2
∑

m2=1

K3
∑

m3=1

(Θrec ⋆ Q)(m1,m2,m3)Q(m1,m2,m3)

(4.35)

Electrostatic Interactions 36

We first notice that Θrec does not depend on the charge positions and that Mn (uiα − k) is differentiable for
n > 2 (which is always the case in practical applications). Thus the force on each charge can be obtained
by taking the derivative of Eq. (4.35), namely

F
(qr)
iα = −

∂Vqr

∂riα
=

K1
∑

m1=1

K2
∑

m2=1

K3
∑

m3=1

∂Q(m1,m2,m3)

∂riα
(Θrec ⋆ Q)(m1,m2,m3). (4.36)

In practice, the calculation is carried out according to the following scheme: i) At each simulation
step one computes the grid scaled fractional coordinates uiα and fills an array with Q according to Eq.
(4.28). At this stage, the derivative of the Mn functions are also computed and stored in memory. ii) The
array containing Q is then overwritten by F [Q], i.e. Q’s 3–D Fourier transform. iii) Subsequently, the
electrostatic energy is computed via Eq. (4.30). At the same time, the array containing F [Q] is overwritten
by the product of itself with the array containing BC (computed at the very beginning of the run). iv)
The resulting array is then Fourier transformed to obtain the convolution Θrec ⋆ Q. v) Finally, the forces
are computed via Eq. (4.36) using the previously stored derivatives of the Mn functions to recast ∂Q/∂riα.

The memory requirements of the SPME method are limited. 2K1K2K3 double precision real numbers
are needed for the grid charge array Q, while the calculation of the functions Mn(uiα − j) and their
derivatives requires only 6×n×N double precision real numbers. The Kα integers determines the fineness
of the grid along the α-th lattice vector of the unit cell. The output accuracy of the energy and forces
depends on the SPME parameters: The α convergence parameter, the grid spacing and the order n of
the B-spline interpolation. For a typical α ≃ 0.4 Å −1 a relative accuracy between 10−4 − 10−5 for the
electrostatic energy are obtained when the grid spacing is around 1 Å along each axis, and the order n
of the B-spline interpolation is 4 or 5. A rigorous error analysis and a comparison with standard Ewald
summation can be found in Refs. [35] and [102]. For further readings on the PME and SPME techniques
we refer to the original papers [34, 102, 29, 35].

0 4000 8000 12000
Number of atoms

0.0

1.0

2.0

3.0

C
P

U
(s

ec
)

tim
e

fo
r

S
P

M
E

PME tests on 5CB

Figure 4.3: CPU time versus number of particles for the SPME algorithm as measured on a 43P/160MH IBM workstation

The power of the SPME algorithm, compared to the straightforward implementation of the stan-
dard Ewald method, is indeed astonishing. In Fig. (4.3) we report CPU timing obtained on a low end
43P/160MH IBM workstation for the evaluation of the reciprocal lattice energy and forces via SPME for
cyanobiphenil as a function of the number of atoms in the system. Public domain 3-D FFT routines were
used. The algorithm is practically linear and for 12,000 particles SPME takes only 2 CPU seconds to
perform the calculation. A standard Ewald simulation for a box 64× 64× 64 Å3 (i.e. with a grid spacing

Electrostatic Interactions 37

in k space of k = 2π/64 ≃ 0.01 Å
−1

) for the same sample and at the same level of accuracy would have
taken several minutes.

4.3 Subdivision the Non Bonded Potential

In addition to the long range electrostatic contributions, Vqr and Vqd, given in Eqs. (4.20,4.21), more short
range forces play a significant role in the total non bonded potential energy. The latter can be written as:

Vnbn = Vvdw + Vqr + Vqd + V14. (4.37)

Where, Vvdw is the Lennard-Jones potential, namely

Vvdw =

N
∑

i<j

′

4ǫij

[

(

σij

rij

)12

−

(

σij

rij

)6
]

. (4.38)

Here, the prime on the sum indicates that interactions between atoms separated by less than three consec-
utive bonds must be omitted. The term V14 is typical for force fields of complex molecular systems [3, 5].
While non bonded forces between atoms involved in the same covalent bond or angle bending interaction
are generally excluded, the potential between atoms separated by three covalent bonds is retained and
readjusted in various ways. In all cases, the V14 term remains in general a very stiff and, hence, a fast
varying term. The computational cost of the V14 contribution is very small compared to other non bonded
interactions. Thus, it is safer to assigns this potential term to the slowest intramolecular reference system
potential Vn1 of Eq. (4.19).

The Vqr reciprocal lattice term, including the correction due to the excluded or partially excluded (i.e.
the electrostatic part of V14) interactions cannot be split when using SPME and must be assigned altogether
to only one reference system. The time scale of the potential Vqr depends on the convergence parameter
α. Indeed, this constant controls the relative weights of the reciprocal lattice energy Vqr, and of the direct
lattice energy Vqd. By increasing α, one increases the weight of the reciprocal lattice contribution Vqr to the
total Coulomb energy. When using SPME the cost of the reciprocal lattice sums is cut down dramatically
and, therefore, the use of large α’s becomes helpful to reduce the computational burden of the direct lattice
calculation. For a value of α increased beyond a certain limit, there is no longer a computational gain,
since the pair distances must always be evaluated in direct space until convergence of the Lennard-Jones
energy (usually occurring at a 10 Å cutoff). Furthermore, the larger is α, the more short-ranged and fast
varying becomes the potential Vqr, thus requiring short time steps to integrate correctly the equations of
motion. A good compromise for α, valid for cell of any shape and size, is α =0.4-0.5.

The direct space potential is separated [13, 27] in three contributions according to the interaction
distance. The overall non bonded potential breakup is therefore

Vn1 = V14

Vm = V
(1)
vdw + V

(1)
qd

Vl = V
(2)
vdw + V

(2)
qd + Vqr

Vh = V
(3)
vdw + V

(3)
qd (4.39)

where the superscripts m, l, h of the direct space term Vvdw and Vqd refer to the short, medium and
long range non–bonded interactions, respectively. The m-th reference system includes non–bonded direct
space interactions at short range, typically between 0 to 4.3-5.3 Å. Vl contains both the medium range
direct space potential, with a typical range of 4.3-5.3 to 7.3-8.5 Å, and the reciprocal space term, Vqr.
Finally, the h-th reference system, which is the most slowly varying contains, the remaining direct space
interactions from 7.3-8.3 Å to cutoff distance. As the simulations proceeds the particles seen by a target
particle may cross from one region to an other, while the number of two body contacts in one distance
class [19] or reference system potential must be continuously updated. Instabilities caused by this flow
across potential shell boundaries are generally handled by multiplying the pair potential by a group-based
switching function [24]3. Thus, at any distance r the direct space potential V can be written schematically

3Here, the word group has a different meaning that in Sec. 3 and stands for sub ensemble of contiguous atoms defined as
having a total charge of approximately zero.

Electrostatic Interactions 38

as:
V = V1 + V2 + V3 (4.40)

with

V1 = V S1 (4.41)

V2 = V (S2 − S1) (4.42)

V3 = V (S3 − S2) (4.43)

(4.44)

where Sj is the switching function for the three shells, j = m, l, h defined as:

Sj(R) =







1 Rj−1 ≤ R < Rj

S
(j)
3p Rj ≤ R < Rj + λj

0 Rj + λj < R.







(4.45)

Here, R is the intergroup distance and λj is the healing interval for the j-th shell. While R0 is zero,

Table 4.1: Potential breakup and relative time steps for complex systems with interactions modeled by the AMBER[4] force
field and electrostatic computed using the SPME method

Component Contributions Spherical Shells Time step
Vn0 Vstretch + Vbend+ - ∆tn0 = 0.33 fs

+Vi−tors + V
(h)
p−tors

Vn1 Vp−tors + V14 - ∆tn1 = 1.0 fs

Vm V
(1)
LJ + V

(1)
qd,α=0.43 0 < r < 4.5 Å ∆tm = 2.0 fs

Vl V
(2)
LJ + V

(2)
qd,α=0.43+ 4.5 ≤ r < 7.5 Å ∆tl = 4.0 fs

+Vqr,α=0.43

Vh V
(3)
LJ + V

(3)
qd,α=0.43 7.5 ≤ r < 10.0 Å ∆th = 12.0 fs

R1 = Rm, R2 = Rl, and R3 = Rh are the short, medium, long range shell radius, respectively. The

switching S
(j)
3p (R) is 1 at Rj and goes monotonically to 0 at Rj +λj . Provided that S

(j)
3p and its derivatives

are continuous atRj andRj+λj , the analytical form of S3p in the healing interval is arbitrary [16, 20, 24, 13].
The full breakup for an AMBER type force field along with the integration time steps, valid for any complex
molecular system with strong electrostatic interactions, is summarize in table II. The corresponding five
time steps integration algorithm for the NVE ensemble is given by

eiL∆th = exp
[

−∂Vh

∂ri
∂

∂pi

∆th
2

]

.
{

exp
[

−∂Vl

∂ri
∂

∂pi

∆tl
2

] {

exp
[

−∂Vm

∂ri
∂

∂pi

∆tm
2

]

{

exp
[

−∂Vn1

∂ri
∂

∂pi

∆tn1
2

] {

exp
[

−∂Vn0

∂ri
∂

∂pi

∆tn0
2

]

exp
[

ṙi
∂
∂ri

∆t0

]

exp
[

−∂Vn0

∂ri
∂

∂pi

∆tn0
2

]}nn0

exp
[

−∂Vn1

∂ri
∂

∂pi

∆tn1
2

]}nn1

exp
[

−∂Vm

∂ri
∂

∂pi

∆tm
2

]}nm

exp
[

−∂Vl

∂ri
∂

∂pi

∆tl
2

]}nl

exp
[

−∂Vh

∂ri
∂

∂pi

∆th
2

]

,

where nl = ∆th/∆tl, nm = ∆tl/∆tm, nn1 = ∆tm/∆tn1, nn0 = ∆tn1/∆tn0. The explicit integration
algorithm can be easily derived applying the five-fold discrete time propagator (4.46) to the state vector
{p,q} at time 0 using the rule Eq. (2.23). The efficiency and accuracy for energy conservation of this
r-RESPA symplectic and reversible integrator have been discussed extensively in Refs. [13, 2]. Extension
of this subdivision to non NVE simulation is described in Ref. [27].

4.4 Electrostatic Corrections for the Multiple Time Step Simu-

lation

In flexible molecular systems of large size, the Ewald summation presents computational problems which
are crucial to constructing efficient and stable multiple time step integrators [103, 2]. We have seen that

Electrostatic Interactions 39

intra-molecular Coulomb interactions between bonded atoms or between atoms bonded to a common atom
are excluded in most of the standard force fields for protein simulation. In any practical implementation
of the Ewald method, the intra-molecular energy Vintra is automatically included in the reciprocal space
summation and is subtracted in direct space (see Eqs. (4.23,4.21). In actual simulations the reciprocal
space sum is computed with a finite accuracy whereas the intra-molecular term Vintra, due to the excluded
Coulomb interactions, is computed exactly. This clearly prevents the cancellation of the intra-molecular
forces and energies. When the stretching and bending forces are integrated explicitly, the intra-molecular
term due to the excluded contacts varies rapidly with time and so does the cancellation error. Consequently,
instability may be observed when integrating the reciprocal lattice forces in reference systems with large
time steps. The correction due to the truncation can be evaluated by approximating the reciprocal lattice
sum for the excluded contacts in Eq. (4.21) to an integral in the 3-dimensional k space and evaluating this
integral from the cutoff kcut ≡ 2π|m|max to infinity in polar coordinates. The neglected reciprocal lattice
intra-molecular energy is then [104]

Vcorr =
α

π1/2
erfc(kcut/2α)

∑

i

q2i +
∑

ij−excl.

qiqjχ(rij , kcut, α) (4.46)

with

χ(r, kcut, α) =
2

π

∫ ∞

kcut

e−k
2/4α2 sin(kr)

kr
dk. (4.47)

The first constant term in (4.46) refers to the self energy, while the second accounts for the intra-molecular
excluded interactions4. This correction must be included in the same reference systems to which Vqr is
assigned, e.g. Vl in our potential separation (see Table 2).

In principle the correction in Eq. (4.46) applies only to standard Ewald and not to the reciprocal lattice
energy computed via SPME. We can still, however, use the correction Eq. (4.46), if a spherical cutoff kcut is
applied to SPME. This can be done easily by setting exp(−π2m2/α2)/m2 = 0 for 2πm > kcut ≡ ffπNf/L
where L is the side length of the cubic box and Nf is the number of grid points in each direction. The factor
ff must be chosen slightly less than unity. This simple device decreases the effective cutoff in reciprocal
space while maintaining the same grid spacing, thus reducing the B-spline interpolation error (the error
in the B-spline interpolation of the complex exponential is, indeed, maximum precisely at the tail of the
reciprocal sums [35]). In Ref. [104] the effect of including or not such correction in electrostatic systems
using multiple time step algorithms is studied and discussed thoroughly.

0.0 5.0 10.0 15.0 20.0 25.0 30.0
r/Angs

-0.010

0.000

0.010

0.020

0.030

0.040

1/
A

ng
s

α = 0.35 1/Α
α = 0.40 1/Α
α = 0.45 1/Α

0 5 10 15 20 25 30
r/Angs

-0.015

-0.005

0.005

0.015

0.025

0.035

0.045

0.055

1/
A

ng
s

kc = 0.58 1/angs
kc = 0.75 1/angs
kc = 1.0 1/angs

α=0.35 (1/angs)

Figure 4.4: The correction potential χ(r, kc, α) as a function of the distance for different values of the parameters α (left)
and kc (right). The solid line on the top right corner is the bare Coulomb potential 1/r

.

The potential χ(r, kcut, α) yields, in direct space, the neglected reciprocal energy due to the truncation
of the reciprocal lattice sums, and must, in principle, be included for each atom pair distance in direct

4Note that limk→0 χ(r, k, α) = erf(αr)/r.

Electrostatic Interactions 40

space. Thus, the corrected direct space potential is then

V ′qd =
1

2

N
∑

ij

qiqj

[

∑

n

erfcα|rij + rn|

|rij + rn|
+ χ(|rij + rn|, kcut, α)

]

(4.48)

which is then split as usual in short-medium-long range according to (4.39). The correction is certainly
more crucial for the excluded intramolecular contacts because Vcorr is essentially a short-ranged potential
which is non negligible only for intramolecular short distances. For systems with hydrogen bonds, however,
the correction is also important for intermolecular interactions.

In Fig. 4.4 the correction potential is compared to the Coulomb potential (solid line in the top right
corner) for different value of the reciprocal space cutoff kc and of the convergence parameter α. For practical
values of α and kc, the potential is short ranged and small compared to the bare 1/r Coulomb interaction.
In the asymptotic limit Vcorr goes to zero as sin (ar) /r2 where a is a constant. This oscillatory long range
behavior of the correction potential Vcorr is somewhat nasty: In Fig. 4.5 we show the integral

I(r, kc, α) =

∫ r

0

χ(x, kc, α)x
2dx (4.49)

as a function of the distance. If this integral converges then the χ(r, k) is absolutely convergent in 3D. We

30.0 40.0 50.0 60.0
r/Angs

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

A
ng

s

α=6.0

α=1.0
α=0.6

α=0.45
α=0.40
α=0.35

30.0 40.0 50.0 60.0 70.0 80.0
r/Angs

-1.0

-0.5

0.0

0.5

1.0

A
ng

s

|k|=0.58

k=0.75

k=1.0

Figure 4.5: The integral I(r) of Eq. (4.49) as a function of the distance for different values of the parameters α (left) and
kc (right)

see that the period of the oscillations in I(r) increases with kc while α affects only the amplitude. The
total energy is hence again conditionally convergent, since the limit limr→∞I(r) does not exist. However,
unlike for the 1/r bare potential, the energy integral remains in this case bounded. Due to this, a cutoff
on the small potential Vcorr is certainly far less dangerous that a cutoff on the bare 1/r term. In order to
verify this, we have calculated some properties of liquid water using the SPC model[105] from a 200 ps MD
simulation in the NPT ensemble at temperature of 300 K and pressure of 0.1 MPa with i) a very accurate
Ewald sum (column EWALD in Table 4.2), ii) with inaccurate Ewald but corrected in direct space using
Eq. (4.48) (CORRECTED) and iii) with simple cutoff truncation of the bare Coulomb potential and no
Ewald (CUTOFF). Results are reported in Table 4.2 We notice that almost all the computed properties
of water are essentially independent, within statistical error, of the truncation method. The dielectric
properties, on the contrary, appear very sensitive to the method for dealing with long range tails: Accurate
and inaccurate Ewald (corrected in direct space through 4.48) yields, within statistical error, comparable
results whereas the dielectric constant predicted by the spherical cutoff method is more than order of
magnitude smaller. We should remark that method ii) (CORRECTED) is almost twice as efficient as the
“exact” method i).

Electrostatic Interactions 41

EWALD CORRECTED CUTOFF
Coulomb energy (KJ/mole) -55.2 ±0.1 -55.1 ±0.1 -56.4 ±0.1
Potential energy (KJ/mole) -46.2 ±0.1 -46.1 ±0.1 -47.3 ±0.1
Heat Capacity (KJ/mole/K) 74 ±24.5 94 ±22.0 87 ±23.2
Volume (cm3) 18.2 ±0.1 18.3 ±0.1 18.1 ±0.1
Volume Fluctuation (Å3) 136.9±3.5 147.0 ±3.5 138.7±3.5
R0−0 (Å) 2.81 ±0.01 2.81 ±0.01 2.81 ±0.01
Dielectric constant 59 ±25.8 47 ±27.3 3 ±2

Table 4.2: Properties of liquid water computed from a 200 ps simulation at 300 K and 0.1 Mpa on a sample of 343 molecules
in PBC with accurate Ewald (α = 0.35 Å−1; kc = 2.8 Å−1) and no correction Eq. (4.46) (column EWALD), with inaccurate
Ewald (α = 0.35 Å−1; kc = 0.9 Å−1) but including the correction Eq. (4.46) and with no Ewald and cutoff at 10.0 Å. R0−0

is the distance corresponding to the first peak in the Oxygen-Oxygen pair distribution function.

Chapter 5

The Hamiltonian Replica Exchange
Method

5.1 Temperature REM

The Replica Exchange Method is based on multiple concurrent (parallel) canonical simulation that are
allowed to occasionally exchange their configurations. For a system made of N atoms, by “configuration”
we mean a state defined by a 3N dimensional coordinate vector, independent of the momenta. Thus, in a
replica exchange, only coordinates and not momenta are exchanged. In the standard implementation of the
methodology, each replica, bearing a common interaction potential, is characterized by a given temperature
and configurations between couple of replicas are tentatively exchanged at prescribed time intervals using a
probabilistic criterion. The target temperature, i.e. the temperature corresponding to the thermodynamic
state of interest, is usually the lowest among all replicas. In this manner, “hot” configurations from hot
replicas, i.e. configurations where energy barrier are easily crossed, may be occasionally accepted at the
target temperature. The canonical probability of a coordinate configuration X for m-th replica is given by

Pm(X) =
1

Zm
e−βmV (X) (5.1)

where m is the replica index, β−1 = kBT , V (x) is the potential of the system, and Zm =
∫

e−βmV (X)dX is
the configurational partition function for m-th replica. Being the M replicas independent, the probability
distribution for a generic configuration of the M -fold extended system X = (X1, ..XM) is

PX =

M
∏

m

Pm(Xm) (5.2)

As stated above, the global state X of the extended system may evolve in two ways: i) by evolving each
replica independently (i.e. via MC or MD simulation protocols) and ii) by exchanging the configurations of
two replicas. Regarding the second mechanism, we introduce the transition probability W (X, βm;X ′, βn)
for the exchange between the configuration X of replica at Tm and the configuration X ′ for the replica
Tn. The probability for the inverse exchange is clearly given by W (X ′, βm;X, βn). The detailed balance
condition on the extended system for this kind of moves is given by

PX(..., X, βm, X ′, βn, ...)W (X, βm, X ′, βn) = (5.3)

PX′(..., X ′, βm;X, βn, ...)W (X ′, βm;X, βn) (5.4)

which, using the expressions 5.2 and 5.1 for the global probability, is satisfied if the transition probability
satisfies the equation

W (X, βm, X ′, βn)

W (X ′, βm;X, βn)
= e−(βm−βn)(E(X′)−E(X)). (5.5)

The exchange of configurations of replicas obeying the detailed balance condition 5.5 can be as usual
implemented by using the Metropolis algorithm

Pacc = min(1, e−∆) (5.6)

42

Replica exchange 43

T
m

T
n

P
m

(E)

P
n
(E)

Energy

Pr
ob

ab
ili

ty

Figure 5.1: Overlapping configurational energy distribution for two replicas. The shaded area is the acceptance probability
for the configuration exchange. The overlap between the two distribution is a lower bound for the acceptance probability

with ∆ = (βm − βn)(E(X ′) − E(X)). Like in a standard MC technique, because of the detailed balance
condition for the extended system, the sampling in the X multi-configuration space in REM evolves towards
a global equilibrium defined by the multi-canonical probability distribution of the extended system Eq. 5.2.

In principle Eq. 5.6 refers to the probability of an exchange between any two replicas. In practice the
exchanges are attempted between replicas that are contiguous in temperature. Let’s see why. For any two
replicas m, n, the total number of accepted exchanges between them is given by

Nacc = Nacc(∆E < 0) +Nacc(∆E > 0) (5.7)

where ∆E = (E(X ′) − E(X)) and Nacc(∆E < 0), Nacc(∆E > 0) are the number of accepted exchanges
for which ∆E < 0 and ∆E > 0, respectively. When the extended system is at equilibrium, we clearly must
have that

Nacc(∆E < 0) = Nacc(∆E > 0) (5.8)

Inserting the above equation into Eq. 5.7, we obtain

Nacc = 2Nacc(∆E < 0) (5.9)

Since, according to the prescription 5.6, the probability for accepting the move when ∆E < 0 is unitary,
we may write that

Nacc

N tot
= 2P (∆E < 0) (5.10)

where N tot is the total number of attempted exchanges and P (∆E < 0) is the cumulative probability that
a E(X ′) < E(X). Eq. 5.10 states that if the two normalized (configurational) energy distribution Pm(E)
of replica m and Pn(E) of replica n are identical, then the probability for a successful exchange between
the two replica is equal to the area of the overlap of the two distribution (i.e. the shaded area in Fig. 5.1).
If Pm(E) and Pn(E) are not identical, we have in general that the overlap of the two distribution is a lower
bound for the acceptance probability (the standard deviation δE generally increases with the mean energy
Ē). Based on the above, and assuming that M , the total number of replicas, is even, one can then set up

Replica exchange 44

an exchange protocol periodically attempting M/2 simultaneous contiguous replica exchanges m↔ m+ 1
with m odd, or M/2 − 1 simultaneous contiguous replica exchanges m ↔ m + 1 with m even, accepting
each of them with probability given by 5.6.

Given the above scheme, what is the optimal spacing in temperatures for enhanced sampling of the
configuration space at the target temperature? First of all, the hottest temperature TM , defining the full
temperature range ∆T = TM−T1 of the extended system, must be clearly selected such that kBTM is of the
order of the maximum height of the free energy barriers that must be overcome at the target temperature
T1. Concerning the temperature spacing, we have seen that acceptance probability for an exchange is
larger, the larger is the overlap of the two energy distributions referring to the two contiguous replica, i.e.
the closer are the temperatures. Of course, the closer are the temperatures and the larger is the number
of replicas to be simulated, i.e. the heavier is the CPU cost of the simulation. For an optimal choice, we
thus set

Ēm+1 − Ēm = σEm (5.11)

where Ēm and σEm are the mean energy and the standard deviation of energy distribution for the m-the
replica. Assuming then that the system can be described by an ensemble of N harmonic oscillators, we
have that Ēm = NkTm and σEm = cN1/2k1/2Tm.1 Substituting these values in Eq. 5.11, we obtain the
temperature spacing for optimal superposition:

T̄m+1 − T̄m =

(

c2

Nkb

)1/2

Tm (5.12)

In the parallel implementation of the temperature REM, in order to keep the communication overhead
at the lowest possible level, we standardly exchange the temperatures and not the configurations. So the
m-th slave process may explore the entire range of temperatures. When the m-th slave process periodically
writes out the coordinates of the configuration (Typically in pdb or xyz format), one must also keep track of
the current temperature (the program does this automatically) in order be able to reconstruct a posteriori
the true m-th temperature configurational space of the m-th replica. In Fig. 5.2, we show a typical parallel
REM simulation for a general system with 8 processes. In the x-axis we report the simulation time, in
the left y-axis the process index and in the right y-axis the replica index which is bound to the actual
temperature. Each color represents a process running in parallel with other processes with different colors.
As it can be seen, on each process the temperature (i.e. the replica index) changes continuously.. So, for
example the configurational sampling of the replica at the lowest temperature in the given time interval
must be reconstructed combining the data for the slave processes 1,2,3,4,6 If the algorithm is working
properly, (i.e. if the temperature spacing is chosen correctly and if there are no phase transition between
T1 and TM), the temperature in each parallel process must perform a random walk in the temperature
domain [T1, TM].

Going back to equation 5.12, two important issues must be stressed: i) the temperature spacing for
optimal overlap between contiguous replicas while keeping the total number of replicas not too high, is not
uniform but grows with the replica temperature; ii) the temperature spacing between contiguous replicas
must be decreased with increasing number of degrees of freedom. The latter is indeed a severe limitation of
the standard REM technology, since, as the size of the system grows, a larger number of replicas must be
employed for preserving a significant exchange acceptance probability. This is due to the inescapable fact
that the energy fluctuations grow with N1/2 while the energy grows with N . Moreover, in many important
cases, one has to effectively samples reaction coordinates that are rather localized in the protein, like e.g.
in the case of substrate-active site interactions. In the standard temperature REM, the extra heat in the
hot replicas is clearly distributed among all the degrees of freedom of the system and therefore most of this
heat is uselessly used for exchanging uninteresting configurations (e.g. solvent configurations).

5.2 Hamiltonian REM

In this program we adopt a variant of the replica exchange called Hamiltonian REM, that is far more flexible
than the standard temperature REM technique illustrated above. In the Hamiltonian REM, each replica is

1In the latter equation c is a constant that depends on the density of states of the N harmonic oscillators and c2N = Cv

with Cv being the constant volume heat capacity of the system.

Replica exchange 45

Simulation time

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8
Pr

oc
es

s

R
ep

lic
a

in
de

x

Figure 5.2: Typical REM Simulation with 8 replicas. Each process bear a particular color and the color follows the right
scale, i.e. the replica index which is connected to the temperature. To reconstruct a trajectory at a given temperatures, one
must combine the data form several processes.

characterized by a different potential energy rather than by a temperature. In its simplest implementation,
the potential energies of the replicas differ by a scaling factor cm, with c1 = 1 for the target replica. Clearly,
as long as the exchanged states differ only in the coordinates (i.e. momenta are not exchanged), the scaling
of the potential energy of a canonical system (NVT) is equivalent to an inverse temperature scaling. Thus,
Hamiltonian REM with full potential energy scaling and temperature REM are perfectly equivalent in an
extended Monte Carlo simulation. When the replica simulations are done by numerically, integrating the
Nosé-Hoover equations of motion at constant volume, Hamiltonian REM with full potential energy scaling
and temperature REM are clearly no longer equivalent. Since momenta are not exchanged, Eq. 5.6 is valid
for both full Hamiltonian REM and temperature REM, but in the latter technique both the kinetic and
the potential energy are scaled, while in the former as implemented in ORAC one scales only the potential
energy.

The advantage of using the Hamiltonian REM is two-fold: i) as all the replica have the same operating
temperature, one does not have, like in temperature REM, to reinitialize the velocities after one successful
configuration exchange and ii) since the mean atomic velocities are the same throughout the extended
system, one does not have to adapt the time step size for preserving the quality of r-RESPA integrator as
it should be done in temperature REM.

Hamiltonian REM can also be applied to a specific part of the potential, thereby localizing the effect of
the configurational exchanges to specific part of the systems. Given a potential made up of a sum of various
i = 1, ...k contributions (e.g. stretching, bending, torsional, solute-solvent solute-solute solvent-solvent non
bonded etc.), then one can define in a general way the m-th replica of the extended system as

Vm(X) =

k
∑

i=1

c
(m)
i vi(X) (5.13)

where c
(m)
i is the scaling factor for th i-th contribution, vi(X) of the potential of the m-the replica. So

each replica is characterized by a k-dimensional scaling vector cm = (c
(m)
1 , ..c

(m)
i , ..c

(m)
k) whose component

are the scaling factors of k contributions of the interaction potential for that replica. The target replica,

Replica exchange 46

replica 1, is such that V1(x) = V (x), the unscaled potential corresponding to the target system for which
cm = (1, 1, 1, 1..). In vector notation we may compactly write Eq. 5.13 as

Vm(X) = cm · v(X) (5.14)

Using this formalism, the probability of a configuration X in the m-the replica may be written as

Pm(X) =
1

Zm
e−βcm·v(X)). (5.15)

with Zm =
∫

e−βcm·v(X))dX . The detailed balance condition for the exchange of configurations between
replica m (characterized by the scaling vector cm) and replica n (characterized by the scaling vector cn)
is then given by

W (X, cm, X ′, cn, β)

W (X ′, cm;X, cn, β)
= e−β(cm−cn)·[v(X

′)−v(X)] (5.16)

Again, the detailed balance is implemented through Eq. 5.6 with

∆ = β(cm − cn) · [(v(X
′)− v(X)]

= β

k
∑

i=1

(c
(m)
i − c

(n)
i)[Vi(X

′)− Vi(X)] (5.17)

There is considerable freedom in the splitting of the potential (Eq. 5.13) and in the selection of the
corresponding scaling factors. These factors are always positive and can be either smaller or greater than
one, meaning that the corresponding potential contributions, for m > 1, imply a heating and a cooling,
respectively, of the involved degrees of freedom. For example we could use c < 1 for torsions and and
c > 1 for bending, so that, with increasing m, torsional degrees of freedom are heated up while bending
are frozen down.

Global scaling: In the present implementation of ORAC , one can do a global subdivision (i.e. ignoring
the distinction between solvent and solute) of the overall atomistic interaction potential for biomolecular
system according to the following:

Vm(X) = cmba(VBonds + VAngle + Vi−tors) + c
(m)
t (Vtors + V14) + (5.18)

+ c
(m)
nb (Vvdw + Vqr + Vqd) (5.19)

where the meaning of the subscripts is given in Sec. 4.1. Typically one then sets c
(m)
ba = 1 ∀m, as there is

little advantage for conformational sampling in exchanging configurations involving stiff degrees of freedom
such as bending, stretching and improper torsion. On the other hand, conformational transitions in proteins
are mainly driven by torsional and intraprotein and protein-solvent non bonded interactions. It is thus

convenient to heat up these degrees of freedom by scaling with c
(m)
t < 1 and c

(m)
nb < 1 the corresponding

potential functions. With this choice the quantity ∆ in Eq. 5.17 is given by

∆ = β(c
(m)
t − c

(n)
t)[Vtors(X

′) + V14(X
′)− Vtors(X)− V14(X)] +

+ β(c
(m)
nb − c

(n)
nb)[Vvdw(X

′) + Vqr(X
′) + Vqd(X

′)− (Vvdw(X) + Vqr(X) + Vqd(X)) (5.20)

Local scaling: Hamiltonian REM in ORAC can work also by tempering only a user defined “solute”.
Unlike standard implementation of the solute tempering techniques[106], the “solute” in the present version
can be any portion of the system including solvent molecules. Once the solute has been defined, the
complementary “non solute” portion of the system is by definition the “solvent”. In this manner, the
scaling (i.e. the heating or freezing) can be localized in a specific part of the system with the remainder
(the “solvent”) of the system behaving normally (i.e. with the target interaction potential). In order to
clarify how local scaling work, we illustrate the technique with a working general example. Suppose to
choose a subset of atoms n in the system that define the “solute”. This subset can be chosen arbitrarily
and may include disconnected portions of the protein, as well as selected solvent molecules. The solvent
is then made up of the remaining N − n atoms. According to this subdivision, the global potential of the
system may be written as

V (X) = V (Slt)(Xn) + V (Slt−Slv)(Xn, XN−n) + V (Slv−Slv)(XN−n) (5.21)

Replica exchange 47

where

V (Slt)(Xn) = Vtors(Xn) + V14(Xn) + Vvdw(Xn) + Vqd(Xn)

V (Slt−Slv)(Xn, XN−n) = Vvdw(Xn, XN−n) + Vqd(Xn, XN−n)

V (Slv−Slv)(XN−n) = Vvdw(Xn, XN−n) + Vqr(Xn, XN−n) + Vqr + Vbd(XN) (5.22)

The solute potential V (Slt)(Xn) includes all the proper torsions and the 14 non bonded interactions involving
the n atoms of the solute.2 The solute-solvent interaction involve all non-bonded interactions between the
N − n solvent atoms and the n solute atoms. The solvent-solvent interaction involve all non-bonded
interactions among the N − n solvent atoms. As one can see, the global fast bonded potential Vbd(XN) =
(VBonds+VAngle+Vi−tors) is assimilated to a solvent-solvent contribution. It should also be remarked that the
reciprocal lattice contribution Vqr, i.e. the long range electrostatics, is in any case assigned to the solvent-
solvent term even if it includes all kinds of non bonded interaction (solute-solute, solvent-solute and solvent-
solvent). The reason why Vqr is not split in the solute-solute, solute-solvent and solvent-solvent components
is both physical and practical. Firstly, the long-range potential associated to each of three component of
this term is expected, in general, to be rather insensitive along arbitrary reaction coordinates, such that
a scaling of Vqr do not correspondingly produce a significant heating of any conformational coordinate.
Secondly, in the Particle Mesh Approach approach the solute-solute, solvent-solute and solvent-solvent
contribution to Vqr can no longer be easily separated, and this term must be thus arbitrarily assigned to
one of the three components. Given the subdivision Eq. 5.22, the local scaling for replica m in ORAC is
implemented as

Vm(X) = c
(m)
Slt V

(Slt)(Xn) + c
(m)
(Slt−Slv)V

(Slt−Slv)(Xn, XN−n) + V (Slv−Slv)(XN−n) (5.23)

The solvent-solvent interactions, including the global bonded potential and the long-range electrostatic
interactions, are not scaled in the local approach.

Solute-solute interactions and solute-solvent interactions as defined in Eq. 5.22 are scaled independently,
thereby generalizing the so-called solute-tempering approach recently proposed by Liu et al.[106] This
generality allows a complete freedom in the choice of the scaling protocol. For example, one can choose to

set c
(m)
(Slt−Slv) > 1, i.e. to progressively “freeze” the solute-solvent interaction as the replica index m grows,

while at the same time setting c
(m)
Slt = 1 for all replicas, thereby favoring, at large c

(m)
(Slt−Slv) the “solvation”

of the solute, i.e., for example, favoring the unfolding.
The global REM algorithm (i.e. uniform scaling of the full interaction potential) as implemented in

ORAC works also for constant pressure simulation (see ISOSTRESS directive). In that case, the selected
external pressure pressure refers to that of the target replica (m = 1). Since the PV is a configurational term
and is not scaled in the current implementation, the non target replicas sample coordinate configurations
according to a higher external pressure, i.e. Pm = P1/cm where cm is the scaling factor of replica m. This
choice is done in order to avoid, through an increase of the external pressure, a catastrophic expansion of
the simulation box for low scaling factors (or high temperatures).

5.3 Calculating Ensemble Averages Using Configurations from
All Ensembles (MBAR estimator)

As recently shown by Shirts and Chodera[107], all the configurations produced by a REM simulation
of M replicas, each characterized by a distribution function Pm(X), can be effectively used to obtain
equilibrium averages for any target distribution Pn(X), using the so-called Multistate Bennett Acceptance
Ratio (MBAR) estimator, which is illustrated in the following.

2With this definition, V(Slt)(Xn) may also depend on the coordinate of few solvent atoms. Being the definition of the

solute atom based rather than potential based, it may be necessary to include in V bd
slt (Xn), e.g., torsional terms that involve

boundary solvent atoms.

Replica exchange 48

In the ORAC REM implementation, the most general distribution function for replica m is given by Eq.
5.15. Given that for each replica m one has saved Nm configurations of the kind {xm

1 , ...xm
k , ...}, it can be

easily shown that

Zn =

∑M
m=1 ZmN−1m

∑Nm

k=1 αnm(xm
k)Pn(x

m
k)

N−1n
∑M

m=1

∑Nn

k=1 αnm(xn
k)Pm(xn

k)
. (5.24)

Eq. 5.24 holds for any arbitrary bridge function αnm(X) , In particular, choosing[107]

αnm(X) =
NmZ−1m

∑M
l NlZ

−1
l Pl(X)

(5.25)

Eq. 5.24 transforms as

Zn =

N
∑

k=1

Pn(xk)
∑M

l=1 Z
−1
l NlPl(xk)

(5.26)

where we have collapsed the two indices k, for the configurations, and m, for the replicas in one single
index k running on all the configurations N =

∑

m Nm produced by the REMD. Except for an arbitrary
multiplicative factor, Eq. 5.26 can be solved iteratively for the partition function Zn. At the beginning of
the process, one sets Zi = 1 for all i. . At the iteration i+ 1 we have that

Zn(i+ 1) =

N
∑

k

Wn(xk, i) (5.27)

where the weights depend on the Zl calculated at the previous iteration

Wn(xk, i) =
e−βcn·v(xk)

∑

l Nle− lnZl(i)−βcl·v(xk)
(5.28)

and we have used the definition of 5.15 for the replica distribution in ORAC . Once the Zi have been
determined, Z∗ for an arbitrary distribution P∗(X) can be calculated using the configurations sampled in
the REMD simulation:

Z∗ =

N
∑

k

P∗(xk)
∑

l Z
−1
l NlPl(xk)

=

N
∑

k

W∗(xk) (5.29)

Setting for example P∗ = P1(X) ∗A(X), where P1(X) is the target distribution e−βV (x)/Z (i.e. that of the
replica 1) and A(x) is an arbitrary configurational property, we obtain

< A >1=

∫

P1(X)A(X)dX

Z1
=

∫

P∗(X)dX

Z1
=

Z∗
Z1

(5.30)

From Eq. 5.29, we have that Z∗ =
∑N

k W1(xk)A(xk) and that Z1 =
∑N

k W1(xk). Substituting these
results into Eq. 5.30, we obtain

< A >1=

∑N
k W1(xk)A(xk)
∑N

k W1(xk)
(5.31)

where the weights W1 for all sampled points in the REMD simulation are given by

W1(xk, i) =
e−βV (xk)

∑

l Nle− lnZl(i)−βcl·v(xk)
(5.32)

In summary, using the configurational energies from all M replicas, we first solve iteratively the system
5.26 for all Zn (except for a multiplicative factor), with 1 ≤ n 6= M . In doing this, the weights Wn

(including n = 1) are also determined. Finally configurational averages at, e.g., the target distribution can
be determined using all the REMD configurations by means of Eq. 5.31.

Chapter 6

Serial generalized ensemble
simulations

6.1 Introduction

A class of simulation algorithms closely related to REM (see Chapter 5) are the so-called serial generalized-
ensemble (SGE) methods[46]. The basic difference between SGE methods and REM is that in the former
no pairs of replicas are necessary to make a trajectory in temperature space and more generally in the
generalized ensemble space. In SGE methods only one replica can undergo ensemble transitions which are
realized on the basis of a Monte Carlo like criterion. The most known example of SGE algorithm is the
simulated tempering (ST) technique[44, 47], where weighted sampling is used to produce a random walk
in temperature space. An important limitation of SGE approaches is that an evaluation of free energy
differences between ensembles is needed as input to ensure equal visitation of the ensembles, and eventually
a faster convergence of structural properties[48]. REM was just developed to eliminate the need to know
a priori such free energy differences.

ST and temperature-REM yield an extensive exploration of the phase space without configurational re-
straints. This allows to recover not only the global minimum-energy state, but also any equilibrium thermo-
dynamic quantity as a function of temperature. The potential of mean force (PMF)[51, 52] along a chosen
collective coordinate can also be computed a posteriori by multiple-histogram reweighting techniques[53,
54]. PMF can also be determined by performing generalized-ensemble canonical simulations in the space of
the collective coordinate[55] (for example the space of the end-to-end distance of a biopolymer). Compar-
isons between ST and temperature-REM have been reported[48, 49, 50]. The overall conclusions of these
studies are that ST consistently gives a higher rate of delivering the system between high temperature
states and low temperature states, as well as a higher rate of crossing the potential energy space. Moreover
ST is well-suited to distributed computing environments because synchronization and communication be-
tween replicas/processors can be avoided. On the other side, an effective application of ST and, in general,
of SGE methods requires a uniform exploration of the ensemble-space. In order to satisfy this criterion,
acceptance rates must be not only high but also symmetric between forward and backward directions of
the ensemble-space. This symmetry can be achieved by performing weighted sampling, where weights are
correlated with the dimensionless free energies of the ensembles. The knowledge of such free energies is
not needed in REM because replica exchanges occur between microstates of the same extended thermody-
namic ensemble. To achieve rapid sampling of the ensemble-space through high acceptance rates, we need
to choose ensembles appropriately so that neighboring ensembles overlap significantly. As stated above,
the most critical aspect in SGE schemes is the determination of weight factors (viz. dimensionless free
energy differences between neighboring ensembles). This issue has been the subject of many studies, espe-
cially addressed to ST simulations. The first attempts are based on short trial simulations[47, 108, 109].
The proposed procedures are however quite complicated and computationally expensive for systems with
many degrees of freedom. Later, Mitsutake and Okamoto suggested to perform a short REM simulation
to estimate ST weight factors[110] via multiple-histogram reweighting[53, 54]. A further approximated,
but very simple, approach to evaluate weight factors is based on average energies calculated by means

49

Serial generalized ensemble simulations 50

of conventional molecular dynamics simulations[111]. The weight factors obtained by the average-energy
method of Ref. [111] were later demonstrated to correspond to the first term of a cumulant expansion
of free energy differences[49]. Huang et al. used approximated estimates of potential energy distribution
functions (from short trial molecular dynamics simulations) to equalize the acceptance rates of forward
and backward transitions between neighboring temperatures, ultimately leading to a uniform temperature
sampling in ST[112]. The techniques illustrated above have been devised to determine weight factors to be
used without further refinement[110] or as an initial guess to be updated during the simulation[112, 111].
In the former case, these approximate factors should (hopefully) ensure an almost random walk through
the ensemble-space. However, as remarked in Ref. [48], the estimate of accurate weight factors may be
very difficult for complex systems. Inaccurate estimates, though unaffecting the basic principles of SGE
methods, do affect the sampling performances in terms of simulation time needed to achieve convergence
of structural properties[48].

As discussed above, dimensionless free energy differences between ensembles (viz. weight factors) may
also be the very aim of the simulation[55] (since they correspond to the PMF along the chosen coordinate).
In such cases, accurate determination of weight factors is not simply welcome, but necessary. This can
be done a posteriori using multiple-histogram reweighting techniques[53, 54], or with more or less efficient
updating protocols applied during the simulation[113, 112, 114, 48, 115].

In the ORAC program we have implemented SGE simulations, either in a ST-like fashion or in the
space of bond, bending and torsional coordinates. These simulations exploit the adaptive method to
calculate weight factors developed in Ref. [56]. Such method, called BAR-SGE, is based on a generalized
expression[116, 117] of the Bennett Acceptance Ratio[118] (BAR) and free energy perturbation[119]. It is
asymptotically exact and requires a low computational time per updating step. The algorithm is suited,
not only to calculate the free energy on the fly during the simulation, but also as a possible criterion to
establish whether equilibration has been reached.

6.2 Fundamentals of serial generalized-ensemble methods

SGE methods deal with a set of N ensembles associated with different dimensionless Hamiltonians hn(x, p),
where x and p denote the atomic coordinates and momenta of a microstate1, and n = 1, 2, . . . , N denotes
the ensemble. Each ensemble is characterized by a partition function expressed as

Zn =

∫

e−hn(x,p) dx dp. (6.1)

In ST simulations we have temperature ensembles and therefore the dimensionless Hamiltonian is

hn(x, p) = βnH(x, p), (6.2)

where H(x, p) is the original Hamiltonian and βn = (kBTn)
−1, with kB being the Boltzmann constant

and Tn the temperature of the nth ensemble. If we express the Hamiltonian as a function of λ, namely a
parameter correlated with an arbitrary collective coordinate of the system (or even corresponding to the
pressure), then the dimensionless Hamiltonian associated with the nth λ-ensemble is

hn(x, p) = βH(x, p;λn). (6.3)

Here all ensembles have the same temperature. It is also possible to construct a generalized ensemble for
multiple parameters[120] as

hnl(x, p) = βnH(x, p;λl). (6.4)

In this example two parameters, T and λ, are employed. However no restraint is actually given to the
number of ensemble-spaces. Generalized-ensemble algorithms have a different implementation dependent
on whether the temperature is included in the collection of sampling spaces (Eqs. 6.2 and 6.4) or not (Eq.
6.3). Here we adhere to the most general context without specifying any form of hn(x, p).

In SGE simulations, the probability of a microstate (x, p) in the nth ensemble [from now on denoted
as (x, p)n] is proportional to exp[−hn(x, p) + gn], where gn is a factor, different for each ensemble, that

1In Monte Carlo generalized-ensemble simulations, momenta are dropped out.

Serial generalized ensemble simulations 51

must ensure almost equal visitation of the N ensembles. The extended partition function of this “system
of ensembles” is

Z =

N
∑

n=1

∫

e−hn(x,p)+gn dx dp =

N
∑

n=1

Zne
gn , (6.5)

where Zn is the partition function of the system in the nth ensemble (Eq. 6.1). In practice, SGE simulations
work as follows. A single simulation is performed in a specific ensemble, say n, using Monte Carlo or
molecular dynamics sampling protocols, and after a certain interval, an attempt is made to change the
microstate (x, p)n to another microstate of a different ensemble, (x′, p′)m. Since high acceptance rates are
obtained as the ensembles n and m overlap significantly, the final ensemble m is typically close to the
initial one, namely m = n ± 12. In principle, the initial and final microstates can be defined by different
coordinates and/or momenta (x 6= x′ and/or p 6= p′), though the condition x = x′ is usually adopted.
The transition probabilities for moving from (x, p)n to (x′, p′)m and vice versa have to satisfy the detailed
balance condition

Pn(x, p)P (n→ m) = Pm(x′, p′)P (m→ n), (6.6)

where Pn(x, p) is the probability of the microstate (x, p)n in the extended canonical ensemble (Eq. 6.5)

Pn(x, p) = Z−1e−hn(x,p)+gn . (6.7)

In Eq. 6.6, P (n → m) is a shorthand for the conditional probability of the transition (x, p)n → (x′, p′)m,
given the system is in the microstate (x, p)n [with analogous meaning of P (m → n)]. Using Eq. 6.7
together with the analogous expression for Pm(x′, p′) in the detailed balance and applying the Metropolis’s
criterion, we find that the transition (x, p)n → (x′, p′)m is accepted with probability

acc[n→ m] = min(1, ehn(x,p)−hm(x′,p′)+gm−gn). (6.8)

The probability of sampling a given ensemble is

Pn =

∫

Pn(x, p) dx dp = Zn Z−1 egn . (6.9)

Uniform sampling sets the condition Pn = N−1 for each ensemble (n = 1, . . . , N), that leads to the equality

gn = − lnZn + ln

(

Z

N

)

. (6.10)

Equation 6.10 implies that, to get uniform sampling, the difference gm − gn in Eq. 6.8 must be replaced
with fm − fn, where fn is the dimensionless free energy related to the actual free energy of the ensemble
n by the relation fn = βFn = − lnZn, where β is the inverse temperature of the ensemble. Here we are
interested in determining such free energy differences that will be referred as optimal weight factors, or
simply, optimal weights. Accordingly, in the acceptance ratio we will use fn instead of gn.

6.2.1 SGE simulations in temperature-space (simulated tempering) and its
implementation in the ORAC program

In SGE Monte Carlo simulations conducted in temperature-space (ST simulations), Eq. 6.2 holds. Specif-
ically, since only configurational sampling is performed, we have

hn(x) = βnV (x), (6.11)

where V (x) is the energy of the configuration x. Exploiting Eq. 6.11 into Eq. 6.8, we find that transitions
from n to m-ensemble, realized at fixed configuration, are accepted with probability

acc[n→ m] = min(1, e(βn−βm)V (x)+fm−fn). (6.12)

2Here, we assume implicitly that the indexes n and m belong to an ordered list such that T1 < T2 < · · · < TN or
λ1 < λ2 < · · · < λN .

Serial generalized ensemble simulations 52

When the system evolution is performed with molecular dynamics simulations, the situation is slightly
more complicate. Suppose to deal with canonical ensembles (to simplify the treatment and the notation we
consider constant-volume constant-temperature ensembles, though extension to constant-pressure constant-
temperature ensembles is straightforward). Usually, constant temperature is implemented through the
Nosé-Hoover method[121, 122] or extensions of it[123]. With the symbol pt, we will denote the momentum
conjugated to the dynamical variable associated with the thermostat. Also in this case Eq. 6.2 holds, but
it takes the form

hn(x, p, pt) = βnH(x, p, pt). (6.13)

In this equation, H(x, p, pt) = V (x)+K(p)+K(pt) is the extended Hamiltonian of the system, where V (x)
is the potential energy, while K(p) and K(pt) are the kinetic energies of the particles and thermostat, re-
spectively. As in Monte Carlo version, transitions from n to m-ensemble are realized at fixed configuration,
while particle momenta are rescaled as

p′ = p (Tm/Tn)
1/2

p′t = pt (Tm/Tn)
1/2.

(6.14)

As in temperature-REM[124], the scaling drops the momenta out of the detailed balance and the acceptance
ratio takes the form of Eq. 6.12. Note that, if more thermostats are adopted[123], then all additional
momenta must be rescaled according to Eq. 6.14.

ST is implemented in the ORAC program exactly as it has been done for REM (see Section 5.2). In
particular global and local scalings of the potential energy can be realized by keeping fixed the temperature
of the system. A generic ensemble n is therefore defined by a coefficient cn (see Eq. 5.13) that scales the
potential energy v(x) of the replica (the vectorial form of the potential energy V (x) is used because of
possible local scaling), i.e., V (x) = cn · v(x). In this sort of Hamiltonian tempering, the transition from n
to m-ensemble is accepted with probability

acc[n→ m] = min(1, eβ(cn−cm)·v(x)+fm−fn). (6.15)

In this approach, since the temperature is the same for all ensembles, momentum rescaling (Eq. 6.14) must
not be applied. We will see in Section 6.3 how fm and fn appearing into Eq. 6.15 are determined.

6.2.2 SGE simulations in λ-space

In SGE simulations conducted in a generic λ-space at constant temperature, the dimensionless Hamiltonian
is given by Eq. 6.3. In the ORAC program we use a Hamiltonian aimed to sample (i) the distance
between two target atoms, (ii) the angle formed by three established atoms and (iii) the torsion formed
by four established atoms or (iv) combinations of these coordinates. There are several ways to model
such a Hamiltonian. Our choice is to use harmonic potential functions correlated to the given collective
coordinates:

hn(x, p, pt) = β[H(x, p, pt) + k(r − λn)
2], (6.16)

where, as usual, H(x, p, pt) is the extended Hamiltonian. In Eq. 6.16, r is the instantaneous collective
coordinate (bond, bending, torsion) and k is a constant. As in ST simulations, transitions from n to m-
ensemble occur at fixed configuration. However, in this case there is no need of rescaling momenta because
they drop out of the detailed balance condition naturally. The resulting acceptance ratio is

acc[n→ m] = min(1, eβk[(r−λn)
2−(r−λm)2]+fm−fn). (6.17)

In this kind of simulations, the free energy as a function of λ corresponds to the biased PMF[51, 52]
along the coordinate associated with λ. Biasing arises from the harmonic potential added to the original
Hamiltonian (see Eq. 6.16). However, reweighting schemes are available to recover the unbiased PMF
along the real coordinate[53, 54, 125, 126]. We will see later how fm and fn are determined.

6.3 The algorithm for optimal weights

6.3.1 Tackling free energy estimates

The algorithm used to calculate the optimal weight factors, namely the dimensionless free energy differences
between ensembles (see Sec. 6.2), is based on the Bennett acceptance ratio[118, 66] and on the free energy

Serial generalized ensemble simulations 53

perturbation formula[119]. We start by showing that the difference between the dimensionless Hamiltonians
appearing in the acceptance ratio (see Eq. 6.8) can be viewed as the generalized dimensionless work done
on the system during the transition (x, p)n → (x′, p′)m. The concept of generalized dimensionless work
in systems subject to mechanical and thermal nonequilibrium changes has been extensively discussed in
the literature[116, 127, 117]. In particular it has been shown (see Eq. 45 of Ref. [117]) that, in a
nonequilibrium realization performed with extended-Lagrangian molecular dynamics[91], the generalized
dimensionless work is

W = βτH
′(τ)− β0H

′(0) (6.18)

where τ is the duration of the realization and

H ′(τ) = H(x, p, pt) + kBTτV(xt), (6.19)

where H(x, p, pt) is defined in Eq. 6.13 and V(xt) is a linear function of the configurational variables
xt associated with the thermostat (see Eq. 42 of Ref. [117]). For simplicity, in Eq. 6.19 we have only
reported the explicit time-dependence of the temperature. Moreover, we have considered to deal with
thermal changes alone using constant-volume constant-temperature equations of motion. Extending the
treatment to constant-pressure constant-temperature algorithms and to systems subject to generic λ, e.g.
mechanical, changes is straightforward[117]. Note that, when no changes are externally applied to the
system, H ′ is exactly the quantity conserved during an equilibrium constant-volume constant-temperature
simulation. Accordingly, the work W is zero. The above definition of generalized dimensionless work is
valid for arbitrary values of τ . In the special case of instantaneous thermal changes and instantaneous
variations of the microstate variables, as it occurs in ST simulations, the times 0 and τ in Eq. 6.18 refer
to the states instantaneously before and after the (x, p)n → (x′, p′)m transition, respectively. Therefore,
according to the notation introduced above, Eq. 6.18 can be rewritten as

W [n→ m] = βmH(x′, p′, p′t)− βnH(x, p, pt) + V(x
′
t)− V(xt), (6.20)

where xt and x′t are the values of the configurational thermostat-variables before and after the (x, p)n →
(x′, p′)m transition, respectively. In the first two terms of the right-hand side of Eq. 6.20 we can rec-
ognize the dimensionless Hamiltonians hm(x′, p′, p′t) and hn(x, p, pt). It is important to observe that, in
generalized-ensemble simulations, an arbitrary change of xt during a transition does not affect the accep-
tance ratio nor the dynamics of the system. Therefore, by setting x′t = xt and generalizing to λ changes,
we recover the equality

W [n→ m] = hm(x′, p′, p′t)− hn(x, p, pt). (6.21)

Using W [n→ m], the acceptance ratio of Eq. 6.8 becomes

acc[n→ m] = min(1, e∆fn→m−W [n→m]), (6.22)

where ∆fn→m = fm − fn. The quantity W [n → m] − ∆fn→m can be interpreted as the generalized
dimensionless work dissipated in the transition (see Eq. 17 of Ref. [117]).

Until now we have simply restated the acceptance ratio of SGE simulations in terms of the generalized
dimensionless work W [n → m]. The truly important aspect of this treatment is that the knowledge of
W [n → m] and W [m → n] stored during the sampling gives us the possibility of evaluating the optimal
weights ∆fn→m using the Bennett method[118] reformulated with maximum likelihood arguments[66, 117].
For example, in ST simulations we must take memory of the quantities W [n→ m] = (βm − βn)Vn(x) and
W [m → n] = (βn − βm)Vm(x), where the subscripts of the potential energy indicate the ensemble at
which sampling occurs. The extension to Hamiltonian tempering implemented in the ORAC program is
straightforward

W [n→ m] = β(cm − cn) · vn(x) (6.23)

with analogous expression forW [m→ n]. In the case of SGE simulations in the λ-space we have (substitute
Eq. 6.16 into Eq. 6.21 with fixed coordinates and momenta)

W [n→ m] = βk[(r − λm)2 − (r − λn)
2]. (6.24)

Serial generalized ensemble simulations 54

Thus, for each pair of neighboring ensembles n and m, we generate two collections of “instantaneous
generalized dimensionless works”: W1[m → n],W2[m → n], . . . , etc. and W1[n → m],W2[n → m], . . . ,
etc.. Let us denote the number of elements of such collections with Nm→n and Nn→m. ∆fn→m can be
calculated by solving the equation (see Eq. 27 of Ref. [117])

Nn→m
∑

i=1

[

1 +
Nn→m

Nm→n
eWi[n→m]−∆fn→m

]−1

−

Nm→n
∑

j=1

[

1 +
Nm→n

Nn→m
eWj [m→n]+∆fn→m

]−1

= 0, (6.25)

that just corresponds to the Bennett acceptance ratio for dimensionless quantities. It is important to point
out that Eq. 6.25 is valid for nonequilibrium transformations, does not matter how far from equilibrium,
and is rigorous only if the initial microstates of the transformations are drawn from equilibrium. Therefore
care should be taken in verifying whether convergence/equilibrium is reached in the adaptive procedure. It
should be noted that Eq. 6.25 is a straightforward generalization of Eq. 8 of Ref. [66] that was specifically
derived for systems subject to mechanical changes.

Shirts et al.[66] proposed a way of evaluating the square uncertainty (variance) of ∆fn→m from maxi-
mum likelihood methods, by also correcting the estimate in the case of the restriction from fixed probability
of forward and backward work measurements to fixed number of forward and backward work measurements.
They provided a formula for systems subject only to mechanical work. However, by following the arguments
of Ref. [117], it is straightforward to generalize the variance:

σ2(∆fn→m) = 2
{

∑Nn→m

i=1 [1 + cosh (Wi[n→ m]−∆f ′)]
−1

+
∑Nm→n

j=1 [1 + cosh (Wj [m→ n] + ∆f ′)]
−1
}−1

−N−1n→m −N−1m→n,
(6.26)

where ∆f ′ = ∆fn→m + ln(Nm→n/Nn→m). The quantity σ2(∆fn→m) can be calculated once ∆fn→m is
recovered from Eq. 6.25.

It is obvious that, in order to employ Eq. 6.25, both n and m ensembles must be visited at least one
time. If statistics is instead retrieved from one ensemble alone, say n, then we have to resort to a different
approach. The one we employ is consistent with the previous treatment. In fact, in the limit that only one
work collection (specifically, the n → m collection) is available, Eq. 6.25 becomes[66] (compare with Eq.
21 of Ref. [117])

e−∆fn→m = N−1n→m

Nn→m
∑

i=1

e−Wi[n→m], (6.27)

thus recovering the well-known fact that the free energy is the expectation value of the work exponential
average[63].

6.3.2 Implementation of adaptive free energy estimates in the ORAC program:
the BAR-SGE method

We now describe how the machinery introduced in Section 6.3.1 can be employed in SGE simulation
programs, such as ORAC. Suppose to deal with N ensembles of a generic Λ-space, be it a temperature-
space, a λ-space, or even a multiple-parameter space. Without loss of generality, we order the ensembles as
Λ1 < Λ2 < · · · < ΛN . Thus, N − 1 optimal weights, ∆f1→2,∆f2→3, . . . ,∆fN−1→N , have to be estimated
adaptively.

(1) At the beginning of the simulation we assign the system, i.e. the replica, to a randomly chosen
ensemble and start the phase space sampling with the established simulation protocol (Monte Carlo or
molecular dynamics). Note that several simulations may run in the generalized-ensemble space, each yield-
ing an independent trajectory. Analogously to REM, a single simulated system will be termed “replica”.
In the ORAC program, we have arbitrarily decided to use the following criteria to distribute the replicas
among the ensembles at the beginning of the SGE simulations. In Hamiltonian tempering simulations, if
we deal with M replicas, we assign them to different ensembles with increasing order, from Λ1 to ΛN . If
M > N then the (N + 1)th replica is assigned to Λ1 (as the first replica), the (N + 2)th replica to Λ2 (as
the second replica) and so on. In SGE simulations performed in the λ-space all replicas are assigned to Λ1

Serial generalized ensemble simulations 55

(see Section 10.2.11 for the definition of the Λ sequence). For the sake of simplicity, in the following presen-
tation of the method we will take into account one replica alone. A discussion regarding multiple-replica
simulations is reported in the final part of this section.

(2) Every La steps and for each ensemble n, we store into memory the quantities W [n → n + 1] and
W [n → n − 1], computed as described in Sec. 6.3.1. There is no well-established recipe in choosing La,
apart from the requirement that it should ensure (as large as possible) decorrelation between work values.
During the simulation we must also record the number of stored W elements, Nn→n+1 and Nn→n−1.

(3) Every Lb steps, such that Lb ≫ La (three orders of magnitude at least), we try a free energy update
on the basis of Eq. 6.25 or Eq. 6.27. The scheme we propose for ∆fn→n+1 follows.

(a) First of all we check if the conditions Nn→n+1 > N ′ and Nn+1→n > N ′ are met. In such a case Eq.
6.25 is applied (setting m = n+1) using the stored dimensionless works (see point 2). The threshold
N ′ is used as a control parameter for the accuracy of the calculation. In the ORAC program we have
set N ′ = int(Lb/La). Once ∆fn→n+1 is known, its square uncertainty is computed according to Eq.
6.26. Then we set Nn→n+1 = 0 and Nn+1→n = 0 and remove W [n→ n+ 1] and W [n+ 1→ n] from
computer memory. Whenever a free energy estimate and the correlated uncertainty are computed, the
optimal weight to be used in the acceptance ratio (Eq. 6.22) is determined applying standard formulas
from maximum likelihood considerations (see Sec. 6.3.3). This step is realized for n = 1, 2, . . . , N−1.

(b) If the criteria needed to apply Eq. 6.25 are not met and no ∆fn→n+1 estimate is still available
from point 3a, then we try to apply Eq. 6.27. In particular two independent estimates of ∆fn→n+1

are attempted. One comes from Eq. 6.27 by setting m = n + 1, whereas the other comes from
Eq. 6.27 applied in the reverse direction (replace n with n + 1 and m with n into Eq. 6.27).
The two estimates will be invoked in the acceptance ratio of n → n + 1 and n + 1 → n ensemble
transitions, respectively (see next point 4). In the former case we need to resort to additional arrays
(denoted as Nup

n→n+1 and W up[n→ n+ 1]) to store Nn→n+1 and W [n→ n+ 1]. Separate arrays are
necessary because they are subject to different manipulation during the simulation. Specifically, if
the condition Nup

n→n+1 > N ′ is satisfied, then we calculate ∆fn→n+1 via Eq. 6.27. This estimate is
employed as such in the acceptance ratio. Then we set Nup

n→n+1 = 0 and removeW up[n→ n+1] from
computer memory. The same protocol is used to calculate ∆fn+1→n from the quantities Ndown

n+1→n

and W down[n+ 1 → n]. The additional arrays introduced here are updated as described at point 2.
Note that in this procedure the arrays of step 3a are neither used nor changed. Note also that the
procedure described here corresponds to the way of calculating the finite free energy differences in
free energy perturbation method[119].

(c) If none of the above criteria is met, then optimal weights are not updated and conventional sampling
continues. Storage of dimensionless works as described at point 2 continues as well.

We point out that, if equilibrium is reached slowly (case of large viscous systems, or systems with
very complex free energy landscape), then the replicas may tend to get trapped in limited regions of
the ensemble space at the early stages of the simulation. This is basically due to initially inaccurate
determination of ∆fn→n+1 from Eq. 6.25 (point 3a). If such an event occurs, then subsequent free
energy estimates from Eq. 6.25 may become very rare or even impossible. However we can prevent
this unwanted situation by passing to the updating criteria of point 3b when the criteria of point 3a
are not met for a given (prior established) number of consecutive times (10 times in ORAC). When
equilibrium will be approached, the criteria of point 3b will favor transitions of the replicas between
neighboring ensembles and eventually the conditions to apply again the criteria of point 3a.

(4) Every Lc steps a transition (x, p)n → (x, p)n±1 is attempted on the basis of the acceptance ratio of
Eq. 6.22 and of the current value of ∆fn→n±1 (properly reweighted according to the equations reported
in Sec. 6.3.3). If the estimate of ∆fn→n±1 is still not available from the methods described at points 3a
and 3b, then the transition is not realized. The upward and downward transitions are chosen with equal
probability.

It is worthwhile stressing again that the procedures of point 3b are only aimed to furnish a reliable
evaluation of optimal weights when such factors are still not available from the bidirectional algorithm
(point 3a) or when the system is get trapped in one or few ensembles (point 3c). Moreover, we remark
that the free energy differences estimated via Eq. 6.27 tend to give larger acceptance rates in comparison

Serial generalized ensemble simulations 56

to the exact free energy differences, thus favoring the transitions toward the ensemble that has not been
visited. This is a well-known (biasing) effect of exponential averaging[128], leading to a mean dissipated
(dimensionless) work artificially low. As a matter of fact this is a positive effect since it makes easier
ensemble transitions during the equilibration phase of the simulation.

In the above discussion, we do not have mentioned the numberM of (independent) replicas that may run
in the space of the N ensembles. In principle, M can vary from one to infinity on the basis of our computer
facilities. The best performance is obtainable if a one-to-one correspondence exists between replicas and
computing processors. A rough parallelization could be obtained performing M independent simulations
and then drawing the data from replicas at the end of the simulation to get an augmented statistics.
However, the calculation of the optimal weights would be much improved if they were periodically updated
on the fly on the basis of the data drawn from all replicas. This is just what ORAC does. In this respect
we notice that our version of multiple-replica SGE algorithm is prone to work efficiently also in distributed
computing environments. The phase of the simulation where information is exchanged is that described
at point 3 (free energy calculation). It should be noted that, when a free energy estimate is performed,
the work arrays stored for each replica/processor (see point 2) do not need to be communicated to all

other replicas/processors. Only the sums
∑Nn→m

i=1 [·]−1 −
∑Nm→n

j=1 [·]−1 (case of Eq. 6.25),
∑Nn→m

i=1 [·]−1 +
∑Nm→n

j=1 [·]−1 (case of Eq. 6.26) and
∑Nn→m

i=1 exp(−Wi[n → m]) (case of Eq. 6.27), together with Nn→m

and Nm→n, must be exchanged for all N − 1 ensemble transitions. Then each replica/processor “will think
by itself” to reassemble the global sums. Exchanging one information implies to send M(M − 1)(N − 1)
real/integer numbers through the net (∼ 60 kB of information using 20 replicas and slightly less than
1 MB of information using 50 replicas). Only in the case of the iterative procedure of Eq. 6.25, one
information has to be sent several times per free energy calculation (i.e., the number of iterations needed
for solving the equation). The computational cost arising from computer communications can however be
reduced updating the free energy rarely. Furthermore, in order to improve the first free energy estimate
and hence to speed up the convergence, the M simulations should be started by distributing the replicas
among neighboring ensembles, namely replica 1 to Λ1, replica 2 to Λ2 and so on (see also the discussion at
the beginning of the current section).

6.3.3 Free energy evaluation from independent estimates and associated vari-
ances

As discussed in Sec. 6.3.2, during a SGE simulation, optimal weights are evaluated using Eq. 6.25, and
only temporary values are obtained from Eq. 6.27. Therefore, for each optimal weight, the simulation
produces a series of estimates, ∆f1,∆f2, . . . ,∆fP . At a given time, the current value of P depends, on
average, on the time and on the update frequency of optimal weights. In this section, for convenience,
the subscript in ∆fi labels independent estimates. We also know that each ∆fi value is affected by an
uncertainty quantified by the associated variance δ2(∆fi) calculated via Eq. 6.26. We can then write ∆̂f ,

the optimal estimator of P−1
∑P

i=1 ∆fi, by a weighted sum of the individual estimates[129]

∆̂f =

∑P
i=1[δ

2(∆fi)]
−1∆fi

∑P
j=1[δ

2(∆fj)]−1
. (6.28)

Note that independent estimates with smaller variances get greater weight, and if the variances are equal
then the estimator ∆̂f is simply the mean value of the estimates. The uncertainty in the resulting estimate
can be computed from the variances of the single estimates as

δ2(∆̂f) =







P
∑

j=1

[δ2(∆fj)]
−1







−1

. (6.29)

The ORAC program allows one to calculate ∆̂f using either all available estimates or a fixed number of
estimates, taken from the latest ones.

Chapter 7

Metadynamics Simulation:
history-dependent algorithms in
Non-Boltzmann sampling

If we are studying a prototypical elementary reaction, in which two stable states are separated by a high
free energy barrier ∆A∗ ≫ kBT along the reaction coordinate s, configurations corresponding to the free
energy maximum (the transition state s∗) can be sampled by adding a restraining potential to the original
Hamiltonian of the system, so as to obtain a frequency histogram for the value of the reaction coordinate
s centered around the transition state itself. If we were good enough in locating the transition state and
matching the curvature of the potential, this distribution will overlap with the two distributions obtained
starting two different simulations from the two metastable states. The free energy difference between
the metastable states, as well as the height of the free energy barrier at the transition state, can then
be computed using the sampling from this “bridging” distribution. This solution is known as Umbrella
Sampling[57]. More generally, if the transition state can be identified and located at some value of the
reaction coordinate, the procedure of modifying the energetics of a system in order to balance the activation
barrier and flatten the free energy profile is known with the name of Non-Boltzmann sampling. The original
free energy can be computed from the free energy of the modified ensemble through the formula

A(s) ∼ A′(s)− V (s) (7.1)

where A′(s) denotes the free energy computed by simulating the modified ergodic system. As in the Um-
brella Sampling algorithm, the hardest part of the Non-Boltzmann sampling approach is the construction
of a good biasing potential, since this task can be performed only iteratively. Given a rough (because of
some free energy barrier) estimate of A(s) from an old simulation, the simplest way to know how good this
estimate is consists in performing a new simulation using this estimate, inverted in sign, as a bias potential.
If the free energy profile of the modified system is flat, A′ = constant, then A(s) ∼ −V (s) is the free energy
inverted in sign. Otherwise, from this simulation we can compute an improved estimate for A(s) through
Eq. 7.1. The effectiveness of this tedious approach is due to the fact that each correction to the biasing
potential makes the system more ergodic, and therefore each successive simulation is statistically more
accurate than the former.

This iterative approach to the problem[130, 131] led to the development of adaptive biasing potential
methods that improve the potential “on the fly” [132, 60, 58, 133], i.e., while the simulation is performed.
All these methods share all the common basic idea, namely, “to introduce the concept of memory”[132]
during a simulation by changing the potential of mean force perceived by the system, in order to penalize
conformations that have been already sampled before. The potential becomes history-dependent since
it is now a functional of the past trajectory along the reaction coordinate. Among these algorithms,
the Wang-Landau [60] and the metadynamics[58] algorithms have received most attention in the fields of
the Monte Carlo (MC) and Molecular Dynamics (MD) simulations, respectively. This success is mainly
due to the clearness and the ease of implementation of the algorithm, that is basically the same for the
two methods. The Wang-Landau algorithm was initially proposed as a method to compute the density

57

Metadynamics Simulation 58

of states g(E), and therefore the entropy S(E) = ln g(E), of a simulated discrete system. During a
Wang-Landau MC simulation, S(E) is estimated as an histogram, increasing by a fixed quantity the
frequency of the visited energy levels, while moves are generated randomly and accepted with a Metropolis
probability acc(E → E′) = min {1, exp(−∆S)}, where ∆S = S(E′) − S(E) is the current estimate of
the entropy change after the move. While for a random walk in energy the system would have been
trapped in entropy maxima, the algorithm, that can be easily extended to the computation of any entropy-
related thermodynamic potential along a generic collective variable, helps the system in escaping from
these maxima and reconstructs the entropy S(E). The metadynamics algorithm extends this approach
to off-lattice systems and to Molecular Dynamics. Metadynamics has been successfully applied in the
computation of free energy profiles in disparate fields, ranging from chemical physics to biophysics and
material sciences. For a system in the canonical ensemble, metadynamics reconstructs the free energy
along some reaction coordinate s as a sum of Gaussian functions deposed along the trajectory of the
system. This sum inverted in sign is used during the simulation as a biasing potential V (s, t) that depends
explicitly on time s:

V (s, t) =
∑

t′=τ,2τ,...t

G(s; st′ , h, σ) (7.2)

where G(s; st, h, σ) = h exp
(

−(s− st)
2/2σ2

)

is a Gaussian function centered in st with height h and
variance σ2. During a metadynamics simulation, the potential V (s, t) will grow faster for states with
an higher probability, pushing out the system from minima in the free energy landscape. If the rate
of deposition ω = h/τ is sufficiently slow, the system can be considered in equilibrium with the biased
Hamiltonian H ′(x, t) = H(x) + V (s, t), and therefore the probability of visiting state s at time t is the
equilibrium canonical distribution p(s, t) ∝ exp[−β(A(s) + V (s, t)]. Once all the free energy minima have
been “filled” by the biasing potential, and therefore V (s, t) = −A(s), such a probability is uniform along
s and the potential will grow uniformly.

The thermodynamic work spent in changing the potential from the original Hamiltonian H(x) to

H ′(x, t) = H(x)+V (s, t) can be computed through the relation W =
∫ t

0 dτ
(

∂H
∂t

)

τ
. In the limit of an adia-

batic transformation, this quantity is equal to the Helmholtz free energy difference ∆A = A′−A0 between
two systems with energy functions H ′ and H , where A′ =

∫

dx exp(−βH ′) and A0 =
∫

dx exp(−βH)[134].
However, if the process is too fast with respect to the ergodic time scale, a part of the work spent during the
switching will be dissipated in the system, resulting in an non-equilibrium, non-canonical distribution, and
in a systematic error in the free energy estimate. In particular, it is assumed that during a metadynamics
simulation all the microscopic variables different from the macroscopic reaction coordinate s are always
in the equilibrium state corresponding to the value of s[135]. This property is known with the name of
Markov property, and it summarizes the main assumption of the algorithm: all the slow modes of the
system coupled to the reaction under study have to be known a priori and they have to be included in
the number of the reaction coordinates. Therefore, at variance with the methods presented in the previous
chapters, metadynamics should be considered a quasi-equilibrium method, in which the knowledge about
the variables that capture the mechanism of a reaction is exploited to gain insight on the transition states
and more generally to compute the free energy landscape along the relevant reaction coordinates.

7.1 Implementation in ORAC

From the practical point of view, a metadynamics simulation consists in two steps. In the first one, a set
of reaction coordinates is chosen whose dynamics describes the process under study. As we said, such a
procedure requires an high degree of chemical and physical intuition for its application to complex molecular
system, since these variables are not obviously determined from a molecular structure.

The second step is the metadynamics simulation itself, during which an history-dependent potential
is constructed by summing, at regular time intervals, repulsive potential terms centered in the current
position of the system in the space of the reaction coordinates. In its standard implementation, the history-
dependent potential of metadynamics is given by a sum of small repulsive Gaussian, Eq.7.2. Some variants
have been introduced, with the intent of improving the accuracy or the efficiency of the method[136, 137].
In the ORAC program we have used Lucy’s function[138] as a very efficient alternative to the use of Gaussian

Metadynamics Simulation 59

distributions.. It is defined as 1

L(s; s0, h, w) = h

(

1 + 2
|s− s0|

w

)(

1−
|s− s0|

w

)2

; 0 if |s− s0| > w (7.3)

with the origin at s0. The symbols h and w denote the height and the width, respectively. Such a function
is normalizable,

∫∞

−∞ ds L(s; s0, w) = hw, has a finite range w, has a maximum at the origin and it is
differentiable everywhere. A Lucy’s function can be compared with a Gaussian function with the same
value at the origin and at |s| = s0 + w/2, such that

2σ = w/(2 ln 2)1/2 (7.4)

A Lucy’s function can be regarded as a Gaussian function with σ in Eq.7.4, but without the long tails of
the Gaussian, as can be seen in Fig.7.1 where a Lucy’s function with h = w = 1 and a Gaussian function
with the same height and σ = w/2(2 ln 2)1/2 are shown. The parameters h, w and τ affects the accuracy
of the free energy reconstruction in a similar manner to the height and the width of Gaussian functions
and a comprehensive review on the analysis of the error during a metadynamics run can be found in [62].

Figure 7.1: Lucy’s function L with h = w = 1, along with a Gaussian function G with the same height and
2σ = w/(2 ln 2)1/2.

The history dependent potential used during an ORAC simulation can therefore be written as

V (s, t) =
∑

t′=τ,2τ,...

L(s; st′ , h, w) (7.5)

During a simulation, forces from this biasing potential are computed in the shell n1 as a sum of derivatives
of L functions:

∂L(s; s0, h, w)

∂s
=

6h

w3
(s− s0)(|s− s0| − w); 0 if |s− s0| > w (7.6)

Such a derivative is computationally attractive, since it does not require the evaluation of an exponential
function as in the case of the derivative of a Gaussian function. Moreover, since L has a finite range by

1 Lucy’s function can be defined for a generic order n such that it has n − 1 continuous derivative everywhere[139]. The
original definition[138] was given for n = 3; here it is employed with n = 2.

Metadynamics Simulation 60

definition, it does not need to be smoothly truncated[137], as there are no contribution to the forces from
hills farther than the width w.

Using the standard metadynamics approach, during a simulation the algorithm keeps on adding terms
to the history-dependent potential (the sum in Eq.7.5) with the same constant rate ω = h/τ . However, the
optimal solution would be to use a faster rate at the beginning of the simulation, so as to produce a rough
estimate of the free energy, and then to reduce ω to refine this estimate[140]. This problem corresponds
to finding an optimal protocol for the evolution of the modification factor in the original Wang-Landau
algorithm. Various solutions have been proposed[141, 133, 142, 143] in which the energy h in 7.3 is time-
dependent. We propose instead to add a term to the biasing potential with a given probability Pt(add),
depending parametrically on time. For example, for Pt(add) ∝ 1/t, the evolution of the rate would be given
by ω(t) = Pt(add)ω0 ∝ ω0/t. This procedure can be seen on average as an increasing deposition interval
τ(t), such that ω(t) = h/τ(t) decreases in time. In the present implementation of ORAC, three different
choices are available for the probability P (add): the default one is simply P (add) = 1 and corresponds to
the standard metadynamics algorithm. The second one is given by

Pt(add) = e−Vmax(t)/kBT ′

(7.7)

where Vmax(t) is the maximum value of the potential V (s, t) at time t. During the simulation, the effective
rate ω(t) decreases as Vmax(t) increases. As Vmax ≫ kBT

′, the deposition rate ω(t) is so slow that the
transformation can be considered adiabatic, and the biasing potential converges to the free energy inverted
in sign, A(s) = −V (s, t). The slowdown of ω can be tuned through the parameter T ′. Finally, following
the well-tempered metadynamics approach[143], the third choice is given by

Ps,t(add) = e−V (s,t)/kBT ′

(7.8)

where the probability depends parametrically both on time t and on position s of the system along the
reaction coordinate through the biasing potential V . In this case, the biasing potential does not converge
to the free energy inverted in sign as in the previous case, since in general ω turns out to be coordinate-
dependent even when the potential has flatten the free energy profile. However, as shown in [143], the
relation

A(s) = −
T + T ′

T
V (s, t) (7.9)

can be used to recover the original free energy from the biasing potential.
The multiple walkers version of metadynamics algorithm[144] was implemented in the parallel version

of the code through the MPI library. This approach is based on running simultaneously multiple replicas
of the system, contributing equally to the same history-dependent potential, and therefore to the same free
energy surface reconstruction. For N replicas, V (s, t) can be written as a double sum

V (s, t) =
∑

t′=τ,2τ,...t

∑

i=1,N

L(s; si,t′ , h, σ) (7.10)

where si,t′ is the position at time t′ of the i-th replica along s. In particular, the enhanced efficiency of
this algorithm with respect to uncoupled simulations contributes to make the calculation of FESs in high
dimensions more accessible.

In the ORAC distribution at http://www.chim.unifi.it/orac we provide some example of metadynamics
simulations using Lucy’s functions on multi-dimensional surfaces of simple molecules in the gas phase along
with some ancillary codes for the analysis of the program output.

Chapter 8

Steered Molecular Dynamics

Steered molecular dynamics simulation (SMD) is a technique mimicking the principle of the atomic force
microscopy (AFM). In practice, one applies a time dependent mechanical external potential that obliges
the system to perform some prescribed motion in a prescribed simulation time. SMD has been widely
used to explore the mechanical functions of biomolecules such as ligand receptor binding/unbinding and
elasticity of muscle proteins during stretching at the atomic level[145]. The SMD has also been used in the
past to approximately estimate the potential of mean force (PMF)1 along a given mechanical coordinate
(for example a distance or an angle). The model upon which this technique for estimating the PMF relies
was based on the assumption that the driven motion along the reaction coordinate z could be described
by an over-damped one-dimensional Langevin equation of the kind

γż = −
dW

dz
+ Fext(z, t) + ξ(t) (8.1)

where γ is the friction coefficient, W is the underlying potential of mean force , Fext(z, t) is the external
force due the driving potential and ξ(t) is a stochastic force related to the friction through the second
fluctuation dissipation theorem. The PMF W (z) can then be determined only if one knows (or can
somehow figure it out) the friction coefficient, so as to evaluate the frictional force that discounts the
irreversible work done in the driven process. The method also relies on the strong assumption that the
friction along z is local in time, i.e. the underlying equilibrium process is Markovian.

8.1 The Crooks theorem

Recent development on non equilibrium thermodynamics have clarified that the PMF along the given re-
action coordinate z can actually be reconstructed exactly using an ensemble of steered molecular dynamics
simulations without resorting to any assumption on, or having any knowledge of the frictional behavior of
the system along the reaction coordinate. These developments date back to a paper by Evans, Searls[146]
where the first example of transient fluctuation theorem for a system driven out of equilibrium was formu-
lated, demonstrating the connection between the time integral of the phase compression factor in Liouville
space along an arbitrary time interval and the probability ratio of producing the entropy A and −A along
a deterministic trajectory of a many particles non equilibrium steady state system. Gavin Crooks in his
phd thesis proposed[64], in the context of Monte Carlo simulations in the canonical ensemble (NVT), a
transient[146] fluctuation formula (from now on indicated with CT) involving the dissipative work for sys-
tems driven out of equilibrium by varying some arbitrary mechanical parameter. The CT is actually even
more general than the Evans and Searls fluctuation theorem[146] since in the latter the driven z coordinate
has an underlying zero PMF (i.e. only entropy is produced in the non equilibrium process) while in the
former the system can also cross different thermodynamics states (i.e. the underlying PMF can also be
non zero such that thermodynamic work can also be done). The Crooks theorem (CT) reads

p(Γ(z0)→ Γ(zτ))

p(Γ∗(z0)← Γ∗(zτ))
= exp[β(WΓ(z0)→Γ(zτ) −∆F)], (8.2)

1The potential of mean force is defined as W(z) = −kBT lnP (z), where P (z) =< δ(z − z(r) > is the probability to find
the system at the value of the reaction coordinate z(r) = z independently on all the other coordinates.

61

Steered Molecular Dynamics 62

-20 0 20 40 60 80

∆ F

P
f
(W)

P
b
(-W)P

b
(W)

<W>
f<-W>

b
−∆F

W
d
(f)

W
d
(b)

<W>
b

W
d
(b)

-20 0 20 40 60 80

W
d
(f)

W
d
(b)

∆F F−∆ <W>
b<-W>

b
<W>

f

W
d
(b)

Figure 8.1: Physical significance of the Crooks theorem for a general driven process: for nearly reversible processes (left)
the forward Pf (W) and backward Pb(−W) work distributions overlap significantly. The dotted line is the the backward work
distribution for the inverse process, without changing the sing of the work. The crossing of the two solid distribution occurs
at the free energy value for the forward process ∆F = 18. When the process is done faster (right panel), the dissipation Wd

both in the forward and in the backward process is larger, the overlap is negligible and the crossing point of the two solid
distribution can no longer easily identified.

where τ is the duration time of the driven non equilibrium process, WΓ(z0)→Γ(zτ) is the work done on the
system during the driven trajectory Γ(z0) → Γ(zτ); p(Γ(z0) → Γ(zτ)) is the joint probability of taking
the microstate Γ(z0) from a canonical distribution with a given initial Hamiltonian H(z = z0) and of
performing the forward transformation to the microstate Γ(zτ) corresponding to a different Hamiltonian
H(z = zτ); p(Γ

∗(z0)← Γ∗(zτ)) is the analogous joint probability for the time reversal path, producing the
work WΓ(zτ)→Γ(z0) = −WΓ(z0)→Γ(zτ). ∆F = F (z = zτ) − F (z = z0) is the free energy difference between
the thermodynamic states associated to the Hamiltonians H(z = zτ) and H(z = z0). Although the CT can
be stated in a more general formulation (see Gavin Crooks, phd thesis), here the essential assumptions are
that i) the system is deterministic and satisfies the time reversal symmetry and ii) the reverse trajectory is
done following a reversed time schedule such that WΓ(zτ)→Γ(z0) = −WΓ(z0)→Γ(zτ). The first assumption is
satisfied by any kind of standard MD equation of motion (Newtonian, Nosé-Hoover. Parrinello-Rahman)
while the second condition can be easily imposed in a SMD experiment. A very simple proof of Eq. 8.2
goes as follows: suppose the z0 is drawn from a canonical distribution, and that the driven trajectory that
brings the system to zτ is done adiabatically, i.e. removing the thermal bath. For the reverse trajectory,
drawing zτ from a canonical distribution, due to the time reversal symmetry of the Hamilton equations,
one ends up adiabatically in z0. Under these assumptions, the ratio of the two probabilities on the left
hand side of Eq. 8.2 can be written as

p(Γ(z0)→ Γ(zτ))

p(Γ∗(z0)← Γ∗(zτ))
=

e−βH(z=z0)

Z0

Zτ

e−βH(z=zτ)

= eβ(H(z=zτ)−H(z=z0
)−∆F)

= expβ(WΓ(z0)→Γ(zτ) −∆F) (8.3)

equation where we have used the facts that βF (z = z0) = lnZ0 , βF (z = zτ) = lnZτ and that the energy
difference HB −HZ in the forward adiabatic trajectory equals to the external work done on the systems.
Equation 8.2 refers to the probability of a single forward or backward trajectory. Suppose now to perform
a large number of forward trajectories all with a give time schedule, but each started from a different initial
phase point sampled according to the canonical equilibrium distribution characterized by the Hamiltonian
H(z = z0) and a large and not necessarily equal number of backward trajectories with reverse time schedule

Steered Molecular Dynamics 63

and starting from initial phase points this time sampled according to the canonical equilibrium distribution
characterized by the Hamiltonian H(z = zt).

2 . By collecting all trajectories yielding the work W in (8.2),
the CT may compactly be written as:

PF (W)

PR(−W)
= exp[β(W −∆F)], (8.4)

where PF (W) and Pr(W) are the normalized forward and backward distribution functions (note that, due
to the time reversal symmetry, for the backward distribution the work is taken with the minus sign, i.e.
PR(−W) is the mirror symmetric with respect to PR(W)). According to Eq. 8.4, the ∆F may be thus
evaluated constructing the two work distribution function: ∆F is the work value where the two distribution
cross, i.e PF (W = ∆) = PB(−W = ∆F). We point out in passing that, the famous Jarzynski identity[63]
(JI),

< e−βW >= e−β∆F , (8.5)

is actually a trivial consequence of the CT, being derived from the latter by integrating out the work
variable and using the fact that the work distribution function PF (W) and PR(−W) are normalized.

The physical meaning of the Crooks equation sounds indeed very reasonable and can be even be con-
sidered as a probabilistic restatement of the second law or of a generalization of the H-Boltzmann theorem:
Given a forward deterministic non equilibrium trajectory starting form equilibrium and producing a work
W , the probability to observe a trajectory for the reverse process again starting from equilibrium and
producing the work −W is eβWd small than the former, where Wd = W −∆F is the dissipated work in
the forward process. When the dissipated work is zero, i.e. when the driven process is quasi-static and
is done always at equilibrium, then the two probabilities are identical. With this regard, one important
point to stress is that the CT and the JI hold for all systems and for any kind of arbitrary non equilibrium
process, no matter how fast is performed. In particular, if the non equilibrium process is instantaneous,
i.e. if it is done at infinite speed, then the work done on the system is simply equal to W = (H1 −H0),
with H0 and H1 being the Hamiltonian of the initial and final state, respectively. The JI reduces in this
case to the to famous free energy perturbation Zwanzig[119] formula < e−β(H1−H0) >0= e−β∆F with the
subscript 0 indicating that the canonical average must be taken according to the equilibrium distribution
of the system with Hamiltonian H0.

For fast non equilibrium experiments, a large amount of the work, rather than in advancing the reaction
coordinate, is dissipated in heat that is in turn (only partly) assimilated by the thermal bath3 A consequence
of this is that the maxima of two work distributions PF (W) and PR(W) tend to get further apart from
each other so that the determination of ∆F becomes less accurate. The faster are performed the non
equilibrium experiments, the large is the average dissipation and the smaller is the overlap between the
two work distributions (see Fig. 8.1) The reason why CT and JI can be so useful in evaluating the free
energies along given reaction paths in the molecular dynamics simulation of complex biological system lies
on the fact that this methodologies are inherently more accurate the smaller is the sample. Let’s see why.
As one can see form Fig. 8.1, ∆F can be determined with accuracy if the two work distributions overlap
appreciably, or stated in other terms, if there are sufficient trajectories that in both directions transiently
violate the second law, i.e trajectories for which W < ∆F . This is clearly not in contrast with the second
law which states that W̄ ≤ ∆F where W̄ =

∫

P (W)WdW is the mean irreversible work. In general, the
probability of an overlap of the two work distributions (i.e. the probability of transiently violating the
second law) is clearly larger the smaller is the system. Suppose to simultaneously and irreversibly unfold
N identical proteins in a dilute solution starting from their native states. In the assumption that the

2 The Hamiltonian H(z = zt) may be imposed practically in steered molecular dynamics using constraints or adding a stiff
harmonic potential that keeps the system at z = zt. Both these methods requires small corrections when reconstructing the
PMF. In particular, the use of constraints on z sets also ż = 0, a condition that is not present in the definition of the PMF
(see previous footnote). The correction to the PMF due this extra artificial condition imposed through a generic constraint
is discussed in Ref. [147]. Stiff harmonic potentials, in the sense that the associated stretching motion is decoupled from the
degrees of freedom of the system, behaves essentially like constraints.[148] The depuration of the the PMF from the non stiff
harmonic driving potential in AFM experiments has bee proposed bu Hummer and Szabo.[65]

3During the non equilibrium experiment, the instantaneous “temperature” of the system as measured by the kinetic energy
may well exceed that of the thermal bath. Actually the “temperature” cannot even be defined for a system that is not at
equilibrium as part of it, near the reaction path, can be warmer than other parts that are far from the reaction coordinate.
This has clearly no consequences whatsoever on the CT, since the temperature in Eq. 8.2 that of the system at the initial
points which are drawn by hypothesis at equilibrium

Steered Molecular Dynamics 64

-20 0 20 40 60 80

∆ F

P
f
(W)

P
b
(-W)P

b
(W)

<W>
f<-W>

b
−∆F

W
d
(f)

W
d
(b)

<W>
b

W
d
(b)

-60 -40 -20 0 20 40 60 80 100 120

∆ F

P
f
(W)

P
b
(-W)P

b
(W)

<W>
f

<-W>
b

−∆F

W
d
(f)

W
d
(f)

<W>
b

W
d
(b)

W
d
(b)

Figure 8.2: Effect of the size of the system on the overlap of the forward and backward work distributions. In the left panel
the non equilibrium processes are done in a given time τ on a single molecule. In the right panel the processes, as in left panel
of duration τ , are done independently on three identical molecules. This implies a factor 3 on energies and a factor 31/2 on
widths. As a result of the increased size, the overlap between Pf (W) and Pb(−W) decreases significantly.

intraprotein interaction are negligible, the mean work for this system will be simply N times the mean
work done on a single molecule, while the width of the work distribution for the N molecule systems will
be only N1/2 larger than that of the single molecule system. This effect is illustrated in Fig. 8.2. Now,
biomolecular simulation of biosystems are usually done, for computational reasons, on a single solvated
biomolecule, i.e. in the conditions where the non equilibrium techniques, for the reason explained above,
are deemed to be more successful.

8.2 Determination of the potential of mean force via bidirectional
non equilibrium techniques

The Jarzynski identity is seemingly a better route than the CT to evaluate the full potential of mean
force along F (z) in the interval [z0, zt], with 0 < t < τ . However the exponential averages in Eq. 8.5 is
known to be strongly biased, i.e. it contains a systematic error[149] that grows with decreasing number of
non equilibrium experiments. This can be qualitatively explained with the fact that, for dissipative fast
non equilibrium experiments, the forward work distribution P (W) has its maximum where the exponential
factor e−βW is negligibly small, so that the size of the integrand P (W)e−βW is de facto controlled by the left
tail of the P (W) distribution.[65] An unfortunate consequence of this, is that the PMF calculated through
the JI becomes more and more biased as the reaction z coordinate is advanced, since the accumulated
dissipation work shift the maximum of the P (W) distribution

The CT is far more precise than the JI to evaluate free energy differences. Shirts and Pande[66] have
restated the CT theorem showing that the maximum likelihood estimate (MLE) of the free energy difference
exactly correspond to the so-called Bennett acceptance ratio[118]4. The MLE restatement of the CT is the
following

nF
∑

i=1

1

1 + nF

nR
eβ(W [Fi]−∆F)

−

nR
∑

i=1

1

1 + nR

nF
eβ(W [Ri]+∆F)

− (8.6)

4Bennett was the first researcher to clearly recognize and formalize through the BAR the superiority of bidirectional
methods in the computation of free energy differences. We cite verbatim form his paper[118]: “The best estimate of the
free energy difference is usually obtained by dividing the available computer time approximately equally between the two
ensembles; its efficiency (variance x computer time) is never less, and may be several orders of magnitude greater, than that
obtained by sampling only one ensemble, as is done in perturbation theory.”

Steered Molecular Dynamics 65

where the nF , nr are the number of forward and backward non equilibrium experiments and W [Fi] W [Ri]
indicate the outcome of i-th forward and backward work measurement. This equation has only one solution
for ∆F , i.e. the MLE. As such, however, the Crooks theorem allows, through the MLE estimate based on
bidirectional work measurements, to compute the free energy difference ∆F between the end points (i.e.
between thermodynamic states at fixed and given reaction coordinates z = z0 and z = zt). In principle,
to reconstruct the full PMF along the reaction coordinate z, in the spirit of thermodynamics integration,
One should provide a series of equilibrium ensembles of configurations at intermediate values of zt. Here,
we briefly sketch out a methodology for reconstructing the full PMF in the segment [z0, zτ] doing only the
two work measurements from z0 to zτ and back. We first rewrite the Crooks equation, Eq. 8.2, as follows

ρF (Γ) = ρR(Γ̂)e
β(W−∆F), (8.7)

where ρF , ρb are the probability to observe a particular trajectory Γ in the forward and reverse process,
respectively and Γ̂ indicate the time trajectory taken with inverted time schedule. Eq. 8.7 trivially implies
that

< F >F = < F̂eβ(W−∆F) >R (8.8)

< F >R = < F̂e−β(W−∆F) >F (8.9)

where F = F(Γ), F̂ = F(Γ̂) is an arbitrary functional of the trajectory Γ and of its inverted time schedule
counterpart Γ̂. Using Eq. 8.7, we thus can combine the direct estimate of ρF (Γ) with the indirect estimate
of the same quantity obtained from ρR(Γ̂). This latter, according to Eq. 8.7, must be unbiased with
the weight factor corresponding to the exponential of the dissipated work in the forward measurement.
If the direct and indirect (Eq. 8.7) estimates are done with nF forward measurements and nR reverse
measurements, respectively, the optimal (minimum variance) combination of these two estimates of ρF (Γ)
is done according to the WHAM formula[54]

ρF (Γ) =
nF ρF (Γ) + nRρR(Γ̂)

nF + nRe−β(W−∆F)
. (8.10)

Here W is the work done in the full Γ path from the end point at t = 0 to the end point at t = τ . We
now calculate the average of the trajectory functional e−βW

t
0 at intermediate times 0 < t < τ , using the

optimized above density. Taking the average of this functional over forward (Γ) and reverse (Γ̂) work

measurements, exploiting the Jarzynski identity 8.5 in the form < e−βW
t
0 >= e−β(F (z=zt)−F (z=z0)) , using

the fact that W is odd under time reversal and that W t
0 [Γ̂] = −W

τ
(τ−t)[Γ], we obtain the following estimate

for the free energy at intermediate t, with 0 < t < τ :

e−β(Ft−F0) =

〈

nF e
−βW t

0

nF + nRe−β(W−∆F)

〉

F

+

〈

nRe
βW τ

(τ−t)

nF + nReβ(W+∆F)

〉

R

(8.11)

This equation, due to Minh and Adib[125], allows to reconstruct the entire potential of mean force
Ft − F0 along the reaction coordinate spanned during the bidirectional non equilibrium experiments of
duration τ , no matter how fast the driven processes are done. Note that ∆W = Fτ − F0 and W in Eq.
8.11 are the forward free energy difference and work relative the end points, respectively.

For fast pulling experiments, i.e. when the dissipated work is large, it can be shown[150], that Eq. 8.11
reduces to

e−β(Ft−F0) =< e−βW
t
0 >F +e−β∆F < e

−βW
(t)

τ)
>R (8.12)

In both Eq. 8.12 and Eq. 8.11 one needs to know the free energy difference between the end points ∆F .
An unbiased estimate of ∆F is easily available through the Bennett acceptance ratio, Eq. 8.6.

8.3 Implementation in ORAC

Steered molecular dynamics in ORAC is implemented by adding an external driving potential depending
on user defined internal coordinates in the form of stretching, bending, torsions. The general form of the

Steered Molecular Dynamics 66

time dependent external potential that bring the system from an initial state at t = 0 to a different final
state t = τ is given by

Vext(t) =
1

2

[

Nr
∑

i=1

Ki(ri − ri0(t))
2 +

Nα
∑

i=1

Ki(αi − αi0(t))
2 +

Nθ
∑

i=1

Ki(θi − θi0(t))
2

]

(8.13)

where ri, αi and θi represents the actual i-th stretching , bending and torsional driven coordinate defined
by arbitrarily selecting in the corresponding input definition the involved atoms. So a driven torsion
or a stretching may be defined using arbitrarily chosen atoms of the solute that are not connected by
any real bond. ri0(t), αi0(t) and θi0(t) are time dependent parameters that defines the non equilibrium
trajectory in the space of the coordinates. In ORAC , each of these parameters, given the duration τ of
the non equilibrium experiment, is varied at constant speed from an initial value at time t = 0 defining the
reactants, to a final value at time t = τ defining the products :

ri(t) = ri0 +
riτ − ri0

τ
t = ri0 + virt

αi(t) = αi0 +
αiτ − αi0

τ
t = αi0 + viαt

θi(t) = θi0 +
θiτ − θi0

τ
t = θi0 + viθt (8.14)

As all the steering velocities are constant during the experiments, the above equations define a line

z(t) = {(r1(t), r2(t), ...α1(t), α2(t), .., θ1(t), θ2(t)...} (8.15)

in a reaction coordinate space at Nr +Nα +Nθ dimensions
The work done by the external potential, Eq. 8.13, in the time τ of the non equilibrium driven process

along the coordinate z is calculated as

W τ
0 =

∫ τ

0

[

Nr
∑

i=1

Ki(ri − ri0(t))vir +

Nα
∑

i=1

Ki(αi − αi0(t))viα +

Nθ
∑

i=1

Ki(θi − θi0(t))viθ

]

dt (8.16)

The equilibrium distribution of the starting points for independent work measurements can be deter-
mined (either by a standard equilibrium molecular dynamics simulation or by some enhanced simulation
technique) by constraining the system with the harmonic constraint

Vext(0) =
1

2

[

Nr
∑

i=1

Ki(ri − ri0)
2 +

Nα
∑

i=1

Ki(αi − αi0)
2 +

Nθ
∑

i=1

Ki(θi − θi0)
2

]

(8.17)

for the reactants’ state and

Vext(τ) =
1

2

[

Nr
∑

i=1

Ki(ri − riτ)
2 +

Nα
∑

i=1

Ki(αi − αiτ)
2 +

Nθ
∑

i=1

Ki(θi − θiτ)
2

]

(8.18)

for the products’ state. Having produced the work in a series of bidirectional experiments, one can then
either apply the Bennett formula. Eq. 8.6, to compute the free energy differences between the reactants and
the products states, or, using the intermediate work values W t

0 , apply Eq. 8.11 or Eq. 8.12 to reconstruct
the entire potential of mean force along the the mono-dimensional driven trajectory in a multidimensional
reaction coordinate space defined in Eq. 8.14. In order to define a non necessarily linear trajectory in a
multidimensional reaction coordinate space (e.g. a putative minimum free energy path), on must be able
to assign to a each steered coordinate a different steering time protocol. This can be done in ORAC by
providing an auxiliary file defining the path in coordinate space. The file has the general form shown
in Table 8.3. The free energy or potential of mean force obtained with the described protocols are not
depurated by the jacobian terms arising form the definition of the reaction coordinates. For example,
the potential of mean force, calculated with Eq. 8.11 or Eq. 8.12 along a driven distance for a freely
rotating object includes the additional contribution J(t) = 2kbT ln(rt/r0) arising from the fact that the

Steered Molecular Dynamics 67

t1 r1(t1) ... rNr(t1) α1(t1) ... αNα(t1) θ1(t1) ... θNα(t1)
t2 r1(t2) ... rNr(t2) α1(t2) ... αNα(t2) θ1(t2) ... θNα(t2)

...
tn r1(tn) ... rNr(tn) α1(tn) ... αNα(tn) θ1(tn) ... θNα(tn)

Table 8.1: General format of the file defining of an arbitrary time protocol for a curvilinear path in a reaction
coordinates space at Nr +Nα +Nθ dimensions in ORAC . For a generic coordinate ζ = r, α, θ, the steering velocity
between times tk and tk+1 is constant and equal to vζ(tk) = (ζ(tk+1)− ζ(tk))/(tk+1 − tk)

configurational probability P (r), for two non interacting particles grows with the square of the distance.
Moreover the PMF calculated using the driving potential given in Eq. 8.13 are in principle affected by
the so-called stiff spring approximation,[148] i.e. if the constant Kr,Kα,Kθ in Eq. 8.13 are not large
enough, then one actually computes the free energy associated to the Hamiltonian H = H + Vext(z − zt)
rather than that associated to the Hamiltonian H(z = zt). However the impact of the strength of the force
constant on the computed non equilibrium average, especially if the reaction coordinate is characterized by
inherently slow dynamics and/or the underlying unbiased potential of mean force is much less stiffer than
the harmonic driving potential, is generally rather small even at relatively low values of force constant.
With this respect, it has been shown that[148]

φ(z) = F (z) +
1

2k
F ′(z) −

1

2βk
F ′′(z) +O(1/k2) (8.19)

where φ(z) is PMF of the unbiased system with the Hamiltonian H(z), while F (z) is the PMF that
is actually measured in the SMD experiments, i.e. that corresponding to the biased Hamiltonian H =
H(z) + Vext(z). From Eq. 8.19, one sees that if the derivatives of F are not too high or k is chosen large
enough, then one can safely assume that φ(z) ≃ F (z).

eq:intraq:intra1

Chapter 9

Alchemical Transformations

In the following we shall describe in details the theory of continuous alchemical transformations, with
focus on the issues and technicalities regarding the implementation in molecular dynamics code using the
Ewald method. As we will see, running a simulation using standard implementation of the Ewald methods
of a system where atomic charges are varying, implies the insurgence of non trivial terms in the energy
and forces that must be considered for producing correct trajectories. In a nutshell, Ewald resummations
consists in adding and subtracting to the atomic point charges a spherical Gaussian charge distributions
bearing the same charge, so that the electrostatic potential is split in a fast dying term (the Erfc term),
due to the sum of the point charge and the neutralizing charge distribution and evaluated in the direct
lattice, and in a slowly decaying term (the Erf term) due to the added Gaussian spherical distributions
evaluated in the reciprocal lattice. Thanks to this trick, the conditionally convergent electrostatic energy
sum is split in two absolutely convergent series. In standard implementations of the Ewald resummation
technique, as we will see later on, the electrostatic potential at the atomic position ri is actually not
available with mixing of the interactions between alchemical and non alchemical species in the so-called
Ewald reciprocal lattice contribution (i.e. the Erf part). The Smooth Particle Mesh Ewald method (see
Chapter 3) makes no exception, with the additional complication that the atomic point charges (including
the alchemical charges) are now smeared over nearby grid points to produce a regularly gridded charge
distribution, to be evaluated using Fast Fourier Transform (FFT). Due to the extraordinary efficiency
(see Figure 4.3), the Particle Mesh Ewald method is still an unrivaled methodology for the evaluation of
electrostatic interactions in complex systems. Moreover, PME can be straightforwardly incorporated in
fast multiple time step schemes producing extremely efficient algorithms for, e.g., systems of biological
interest. For these reasons, it is therefore highly desirable to devise rigorous and efficient approaches to
account for alchemical effects in a system treated with PME.

9.0.1 Production of the MD trajectory with an externally driven alchemical
process

In a system of N particles subject to a continuous alchemical transformations, only the non-bonded poten-
tial energy function is modified because of the presence of alchemical species. The full non bonded energy
of the system is given by

V (r1, ..rN , λ, η) =
∑

ij

[1− λij(t)]
QiQj

(λijγ2
el + r2ij)

1/2
erfc(αrij)−

α

π1/2

∑

i

[1− λi(t)]
2Qi

+
1

2πV

∑

m6=0

exp(−m2/α2)

m2

∑

ij

[1− λij(t)]QiQj exp(−i2πm · rij)

+ 4ǫij [1− ηij(t)]

(

1

[γLJηij(t) + (rij/σij)6]
2 −

1

[γηij(t) + (rij/σij)6]

)

(9.1)

where V the unit cell volume, m a reciprocal lattice vector and α is the Ewald convergence parameter
related to the width of the Gaussian spherical charge distribution. The first term in the non-bonded energy

68

Steered Molecular Dynamics 69

Eq. 9.1 is limited to the zero-cell and corresponds to the electrostatic interactions in the direct lattice; γel is
a a soft-core parameter for the direct-lattice electrostatic term to avoid singularities when λij is approaching
to 1.[151] the second term refers to the self interactions of the Gaussian charge distributions and the third
term corresponds to the interactions between Gaussian distributions in the zero cell as well as in the infinite
direct lattice, reformulated as an absolutely convergent summation in the reciprocal lattice. The last term
in Eq. 9.1, finally, corresponds to the modified atom-atom Van der Waals interaction introduced in Ref.
[152] incorporating a soft-core parameterization[151], where the infinity in the Lennard-Jones interaction
is smoothed to zero as a function of the ηi. The parameter γ is a positive constant (usually set[153] to 0.5)
that controls the smoothing to zero of the derivatives Lennard Jones function as r tends to zero.[154]

i j λij(t) ηij(t)
Alchemical Solvent λi(t) ηi(t)
Solvent Alchemical λj(t) ηj(t)
Solvent Solvent 0 0

Alchemical A Alchemical A 0 0
Alchemical A Alchemical B 1 1
Alchemical B Alchemical A 1 1

Table 9.1: Combination rules for alchemical and non alchemical species. The alchemical systems may
contains three species: i) alchemical growing subsystems, ii) alchemical annihilation subsystems and iii)
the non alchemical solvent. The λi(t), ηii(t) atomic factors within each of this species are all identical and
equal to λG/A/S(t), ηG/A/S(t) , where the index G,A, S label the growing, annihilating and solvent species.

In the present general formulation, according to Eq. 9.1, all atoms of the systems, whether alchemical
or not, are characterized by an additional, time dependent and and externally driven “coordinate”, the
λi(t) parameter controlling the charging/discharging of the system and the ηi(t) parameter for switching
on or off the atom-atom Lennard-Jones potential. The time dependence of the ηi(t), λi(t) atomic factors
is externally imposed using an appropriately selected time protocol. The non bonded potential energy
of Eq. 9.1 coincides with the standard potential energy of a system with no alchemical species when all
the alchemical atomic factors λi(t), ηi(t) , referring to electrostatic and Van der Waals interactions, are
constant and equal to zero. At the other extreme, when λi(t) = ηi(t) = 1, the alchemical species disappears
according to the “mixing” rules for λij(t), ηij(t) factors specified in Table 9.1. These rules are such that the
modified alchemical potential is enforced only when one of the two interacting atoms is alchemical while
atom-atom interactions within a given alchemical species are accounted for with the standard potential
or simply set to zero when they do refer to atoms on different alchemical species. In general, the time
protocol for the λi, ηi Van der Waals and electrostatic atomic parameters may differ from each other and
for different alchemical species. A simple and sufficiently flexible scheme[155] would be that, for example,
of allowing only two sets of alchemical species, i.e. the species to be annihilated and the species to be
created, defining hence two different time protocols for the λi and two more for the ηi atomic parameters.
Such a scheme allows, for example, the determination of the energy difference when one group in a molecule
is replaced by an other group in a single alchemical simulation.

As remarked by others[153], it is convenient in a, e.g., alchemical creation, to switch on first the Van
der Waals parameters changing η for the alchemical atoms from one to zero and then charge the system
varying λ from one to zero. While for soft-core Lennard Jones term and the direct lattice electrostatic
term the combination rules described in Table 1 can be straightforwardly implemented at a very limited
computational cost in a standardly written force routine, the same rules cannot be directly applied to
the reciprocal lattice part. In common implementation of the Ewald method, for obvious reason of com-
putational convenience, the reciprocal lattice space double sum is rewritten in terms of a squared charge
weighted structure factors as

Vrl =
1

2πV

∞
∑

m6=0

exp
(

−π2 |m|
2
/α2

)

|m|
2 S (m)S (−m) (9.2)

In a system subject to a continuous alchemical transformation, the charge weighted structure factor becomes

Steered Molecular Dynamics 70

a function of the atomic factors λi(t):

S (m, λ) =
N
∑

i

(1− λi(t))Qi exp (−2πim · ri) (9.3)

In the PME method, the sum of Eq. 9.3 is done via FFT by smearing the atomic charges on a regular
grid in the direct lattice.[35] In this approach, all charge-charge interactions between alchemical and non
alchemical species are almost inextricably mixed in the PME Ewald reciprocal lattice contribution and the
application of the rules reported in Table 9.1 requires an extra effort indeed, an effort that has apparently
deterred many to use the full Ewald method for computing the work done during continuous alchemical
transformations. To this end and with no loss of generality, it is convenient to classify the system in an
alchemical “solute” and in a non alchemical “solvent”, with only the former being externally driven. We
then label with q(t) and Q the time-dependent alchemical charges and the full time-invariant atomic charges
of the solute, respectively, and with QS the charges on the solvent. The alchemical q(t) and full Q solute
charges are related by q(t) = (1 − λ(t))Q. When evaluating the reciprocal lattice energy via Eq. 9.2, the
situation for the charge-charge electrostatic interactions is in represented in Table 9.2. In the direct lattice,

Direct Lattice (Erfc) Reciprocal Lattice (Erf)
EQ
r

q(t)QS

r
QSWS

r
q(t)q(t)

r
q(t)QS

r
QseqS

r

Only interactions ≥14 All interactions

Table 9.2: Charge-charge interactions in alchemical transformations using the Ewald summation. The
atomic charges labeled q(t), Q an d Qs refer to the alchemical charge, to the full (time-invariant) solute
charge and to the solvent (non alchemical) charge.

the rules reported in table 9.1 can be implemented straightforwardly by excluding in the double atomic
summation of Eq. 9.1 all the so-called 12 and 13 contacts. These atom-atom contacts involve directly
bonded atoms of atoms bound to a common atom for which no electrostatic charge-charge contribution
should be evaluated. In the reciprocal lattice, however, because of the structure of Eq. 9.2, all intra-solute
interactions are implicitly of the kind qi(t)qj(t)erf(αr)/r and 12 and 13 pairs are automatically considered
in the sum of Eq. 9.2. The latter terms may be standardly removed in the zero cell by subtracting from
the energy the quantity

Vintra =
∑

ij−excl.

qiqj
erf (αrij)

rij
. (9.4)

Regarding the 1-4 interactions, these are fully included in the reciprocal lattice sum, while in popular force
fields only a portion of them is considered via the so-called fudge factors f . What must be subtracted in
this case is the complementary interaction qi(t)qj(t)(1 − f)erf(αr)/r.

It should be stressed here that, when the reciprocal lattice sum is computed using Eq. 9.2, the zero
cell Erf contribution of the 12, 13 and 14(1 − f) interactions must be removed whether the two charges
are alchemical or not. So, alchemically driven simulations imply no changes on the subtraction of these
peculiar self-interactions with respect to a normally implemented program with no alchemical changes.
The routines that implement Eq. 9.4 must be therefore called using the atomic charges qi = (1− λi(t))Qi

whether alchemical or not (i.e. whether λi is different from zero or not). With the same spirit, the self
interaction in the zero cell, i.e. the term − α

π1/2

∑

i[1−λi(t)]
2Qi must be computed using the same charges.

We have seen in Table 9.2 that in the direct lattice the intrasolute non bonded electrostatic interactions
are computed using the full time invariant solute chargesQ, as alchemical changes affect only solute-solvent
interaction energies. To recover the bare Coulomb potential for intrasolute interaction in a system subject
to an alchemical transformation one must then subtract, as done for the 12 13 and 14(1-f) pairs, the Erf

q(t)q(t) contribution, and add a QQ Erf term to the total energy of the system, producing the alchemical
correction to the electrostatic energy

Valch =
∑

ij>14

QiQj[1− (1 − λi(t))(1 − λj(t))]
erf (αrij)

rij
. (9.5)

where the summation is extended to all non bonded intrasolute interactions. It should be stressed that
the energy of Eq. 9.5 is a non trivial additive term that must be included in simulations of continuous

Steered Molecular Dynamics 71

alchemical transformations. Such term stems from the time dependent alchemical charges q(t) and is due
to the peculiar implementation of the Ewald method. Valch is indeed a large contribution (10-15 kJ mol−1
per solute atom) and its neglect may lead to severe errors in the electrostatic energies and to incorrect MD
trajectories.

We can finally re-write down the total energy of a system subject to an alchemical transformation as

V (x, λ, η) =
∑

ij

[1− λij(t)]
QiQj

rij
erfc(αrij) + Vrl − Vintra −

α

π1/2

∑

i

[1 − λi(t)]
2Q2

i + Valch

+ 4ǫij [1− ηij(t)]

(

1

[αηij(t) + (rij/σij)6]
2 −

1

[αηij(t) + (rij/σij)6]

)

(9.6)

where Vrl, Vintra, Valch are defined in Eqs. 9.2, 9.4 and 9.5, respectively. All terms in Eq. 9.6, except
for the self term α

π1/2

∑

i[1 − λi(t)]
2Q2

i , contribute to the atomic forces that can be standardly computed
by taking the derivatives of the energy Eq. 9.6 with respect to the atomic position ri producing the
correct trajectories for alchemically driven systems under periodic boundary conditions and treated with
the Ewald sum. In the Figure 9.1 we report the time record of the intra-solute electrostatic energy during
the discharging of a molecule of ethanol in water in standard conditions. In spite of the huge changes in the
contributing energy energy terms, the total intrasolute energy remains approximately constant during the
transformation, modulated by the intramolecular motion, exactly as it should. The changes in the solute
self term − α

π1/2

∑

i[1 − λi(t)]
2Qi compensate, at all time steps, the variation of the direct lattice and of

Erf intrasolute corrections. This balance does occur provided that all terms in the energy of Eq. 9.6 are
accounted for, including the intrasolute alchemical Erf correction Valch of Eq. 9.5.

0 2 4 6 8 10 12 14
Time (ps)

-300

-250

-200

-150

-100

-50

0

50

100

150

200

In
tr

as
ol

ut
e

E
ne

rg
y

(k
J

m
ol

-1
)

Total
Direct space (erfc)
Direct space (erf 0-cell)
Self term

Figure 9.1: Time record for the intrasolute energy arising form electrostatic interactions during the al-
chemical discharging of ethanol in water at T=300 K and P=1 Atm. The simulation went on for 15 ps.
The red curve is due the self term − α

π1/2

∑

i[1 − λi(t)]
2Q2

i . The green curve is due to the direct lattice
contribution. The magenta curve includes the terms −Vintra (Eq. 9.4) and Valch (Eq. 9.5).

In a multiple time scheme, the individual contributions to the non bonded forces evolve in time with
disparate time scales and must be hence partitioned in appropriately defined “integration shell” as described
in details in Chapter 3. So in condensed phases, the direct lattice term is integrated in the fast short-ranged
non bonded shell, while the reciprocal lattice summations (including the Erf intramolecular correction terms
in Vintra) are usually assigned, with an appropriate choice of the Gaussian parameter α, to the intermediate
non bonded shell. The Lennard-Jones term, finally, is split among the short-ranged, intermediate-range
and long-range integration shells. The potential subdivision for condensed phases is basically unaffected by
the implementation of alchemical transformation, except for the intrasolute self term Valch and for the now
time-dependent self term α

π1/2

∑

i[1 − λi(t)]
2qi.

1. The latter can be safely included in the intermediate

1This last term does not contribute to the atomic forces but only to the alchemical work and is constant for all non

Steered Molecular Dynamics 72

shell, while the former (a true direct lattice term) must be integrated in the sort-range shell. The λi(t)
and ηi(t)) factors, finally, must be updated, according to the predefined time protocol, before the force
computation of the fast short-ranged non bonded shell.

9.0.2 Calculation of the alchemical work

The work done on the system by the driven alchemical coordinates during a simulation of length τ can be
written as

W = −

∫ τ

0

∂H(x, λ, η)

∂λ
λ̇dt+

∫ τ

0

∂H(x, λ, η)

∂η
η̇ dt (9.7)

In a NVT or NPT extended Lagrangian simulation with an ongoing alchemical process, the alchemical
work, Eq. 9.7, could be computed simply by monitoring the changes in the total energy of the systems,
that includes the real potential and kinetic energy of system and the potential and kinetic energies of the
barostat and the thermostats. This energy, if no velocity scaling is implemented (i.e. no heat is artificially
transferred to or absorbed from the extended system), is a constant of the motion and hence any variation
of it must correspond to the work done on the system.[156] Alternatively the work can be computed by
analytically evaluating the λ and η derivatives of the non bonded energy Eq. 9.6. Both these methods have
counter-indications. The total energy method suffers form the finite precision of energy conservation in
the numerical integration of the equations of motion (usually in multiple time step schemes the oscillations
of the total energy are the order of 1/50:1/100 of the mean fluctuation of the potential energy of the
system)[13]. Also, small drifts in the total energy adds up in the work as a spurious extra dissipation
term that may reduce the accuracy in the free energy determination via the Crooks theorem. The method
based the derivatives, if alchemical species are annihilated and created within the same process, requires
the constant tagging of the two creation and annihilation works, as the increments δλG/A or δηG/A have
opposite signs for creation (G species) and annihilation process (A species). Besides, while all direct lattice
Erfc and and reciprocal lattice Erf corrections terms pose no difficulties in λ derivation with a moderate
extra cost of the force routines, the analytic derivation of reciprocal lattice energy Vrl, Eq. 9.2, with respect
to λ implies the calculation of three gridded charge arrays, i.e. one for the whole system and two more for
the discharging and for the charging alchemical solutes:

∂Vrl

∂λi
= −

1

2πV

∞
∑

m6=0

exp
(

−π2 |m|
2
/α2

)

|m|
2 (S (m)Sa/c slt (−m)S (−m) + Sa/c slt (m)) (9.8)

where with the notation Sa/c slt (m) we refer to the gridded charge arrays obtained for the discharging (
0 ≤ λ ≤ 1) and charging alchemical species (1 ≤ λ ≤ 0) if they are both present.

The work can also by computed numerically observing that the differential work due to a δλ or δη
increment of the alchemical factors is given by

dw =
1

2
(E(λ+ δλ, x) − E(λ− δλ, x) + E(η + δη, x)− E(η − δη, x)) (9.9)

which is correct to order o(δλ2) and o(δη2). Eq. 9.9 requires just one extra calculation of the energy within
the direct space force loop using the λi values at the previous step with no need for tagging annihilating
and creating species. For computing the work arising from the reciprocal lattice sum, Eq. 9.2, the gridded
charge array must be computed at every step of the intermediate-range shell using the current charges
and those at the previous step with a very limited computational cost. Both these array must then
undergo FFT. As for the direct lattice, also for the reciprocal term there is no need for tagging creating or
annihilating species. The different means to access the alchemical work can be used as a powerful check to
test the coherency of the trajectories and of the computed numerical work, Eq. 9.9. The alchemical work
indirectly evaluated monitoring the changes of total energy of the system, must follow closely the profile of
the numerical work computed using Eq. 9.9. Such test is reported in Figure 9.2 (right) for the discharging
of ethanol in water.

In a multiple time step scheme, the alchemical work must be computed exactly as the energy is com-
puted, hence evaluating more often the contributions arising from the fast shells with respect to the terms

alchemical species. The work done by an alchemical species through this term is simply given by W = ±
α

π1/2

∑
i q

2
i ,

depending whether the alchemical species has been charged or discharged.

Steered Molecular Dynamics 73

evolving more slowly. In the scheme reported in the Supporting Information, we succinctly the describe
the implementation of the alchemical process and the associated work calculation in a molecular dynamics
code, highlighting the parts of the code that must be modified because of the presence of alchemical species
with respect to a normal MD code. In Figure 9.2 we report the behavior of the various contributions to

2 4 6 8 10 12 14
Time (ps)

-10

-5

0

5

10

W
or

k
(J

 m
ol

-1
 f

s-1
)

Total
Direct space (erf 0-cell)
Reciprocal Lattice
Self term
V

alch
 + Direct space (erfc)

0 1 2 3 4 5 6 7 8 9
Time (ps)

0

1

2

3

4

5

6

7

kc
al

 m
ol

-1 Numerical work
Total energy change

Figure 9.2: Left: Time record for the intrasolute reciprocal lattice contributions to the differential work (Eq.
9.9) arising form electrostatic interactions during the alchemical discharging of ethanol in water at T=300 K
and P=1 Atm. The simulation went on for 15 ps. The red curve is due the self term − α

π1/2

∑

i[1−λi(t)]
2Q2

i .
The green curve is due to the direct lattice contribution and to Valch. The magenta curve includes the
terms −Vintra (Eq. 9.4). The blue curve is due to the full reciprocal lattice PME term, Eq. 9.2. Right:
Total energy change (red line) and numerical work (black line) computed using Eq. 9.9 for the discharging
of ethanol in water in an alchemical trajectory lasting for 9 ps.

the intra-solute differential work computed during the transformation. In the reciprocal lattice term (blue
curve) the intrasolute and solute-solvent contributions are mixed. Hence the integrated total differential
work (black curve) is, expectedly, slightly positive due to loss of long-range electrostatic energy because of
ethanol discharging. Again, paralleling the situation seen for the intrasolute energy, the work due to the
self term approximately cancels the end Erfc intrasolute contributions.

We conclude this section with some comments on the time protocol that drives the alchemical transfor-
mation. In our implementation, the charges and the Lennard-Jones potential can be switched on and off
independently, by setting up different time protocol for ηi and λi alchemical coordinates. Such as approach
is much more flexible and powerful than that based on the definition of a single alchemical parameter im-
plying the simultaneous variation of Lennard-Jones and electrostatic interactions. If the ηi and λi factors
are varied coherently (i.e. only one type of alchemical coordinate Λi is defined), catastrophic numerical
instabilities may arise, especially in complex solutes with competing conformational structures. One way
to circumvent this problem is to switch electrostatic and Lennard-Jones interactions separately as we do
here.

For the evaluation of solvation free energy via alchemical transformations, the target end states are i)
the decoupled solute (in the gas phase) and the pure solvent (in the liquid state) and ii) the solution. For
the decoupled state i), in principle two independent standard simulations are needed, one for the isolated
solute and the other for pure solvent. However the decoupled state can be sampled in one single simulation
using the non-bonded energy of Eq. 9.6, by setting the alchemical solute λi and ηi factors all equal to one.
In fact, according to Eq. 9.6 and to the rules of Table 9.1, when the alchemical solute λi and ηi terms
are all equal to one, the solute is not felt by any means by the solvent and evolves in time independently,
subject only to the intramolecular interactions with no contribution form the solute lattice images. The
intrasolute electrostatic energy, in particular, has no contribution from the reciprocal lattice sum as the
λi referring to the solute are all equal to 1 in Eq. 9.2. It has indeed a direct lattice contribution for non
bonded intrasolute evaluated in the zero cell according to the rules specified in Table 9.1 plus the alchemic
correction term that simply corresponds (with all solute λi set to 1) to the complementary Erf part thus
recovering the bare intrasolute Coulomb energy. At the other extreme end of the alchemical transformation
(λi = 0, ηi = 0), according to Eq. 9.6 the solute is fully charged interacting normally with the solvent

Steered Molecular Dynamics 74

and with the solute images via the term Eq. 9.2 We now come to the issue of the efficiency of a code

0 10 20 30 40 50
Time/ps

-20

-10

0

10

20

30

W
or

k
(k

J
m

ol
-1

)

η
λ

η

λ

Figure 9.3: Alchemical work produced in the creation of ethanol in water T=300 K and P=1 Atm using
two different time protocols represented by the black and red horizontal lines.

with distinct Lennard-Jones and charge alchemical parameters. Of course, also in this case simultaneous
switching of λi and ηi remains perfectly possible. To avoid numerical instabilities at the early stage of
the creation process or at the end of the annihilation, it is sufficient in the first case to slightly delay the
charge switching and in last case to anticipate the discharging process. In the Figure 9.3 we report the
work computed in the alchemical creation of ethanol in water conducted with two different time protocol.
In the red non equilibrium trajectory, the Lennard-Jones ηi parameters for ethanol are prudently brought
from 1 to 0 in 30 ps, and in the next 20 ps the solute is charged. In the black trajectories lasting for 30 ps,
in the first 10 ps, the ηi coordinates alone are brought from 1 to 0.5 and then, in the last 20 ps, they are
brought to zero (fully switched on ethanol) together with the charging process that is started at 10 ps. As
one can see, both trajectories are regular with no instabilities, yielding negative and comparable works with
limited dissipation with respect to the reversible work (16-17 kJ mol−1, see next section) in spite of short
duration of the non equilibrium alchemical transformations. We must stress here, that in the fast switching
non equilibrium method with determination of the free energy difference between end states via the CFT,
once the equilibrium configurations of the starting end states have been prepared, the simulation time per
trajectory does correspond indeed to the wall-clock time if the independent non-equilibrium trajectories
are performed in parallel. For the creation of ethanol in water, the CPU time amounts to few minutes on
a low-end Desktop computer for both time protocols.

In the following scheme, we succinctly describe the implementation of alchemical transformations in a
MD driver code with multiple time step (MTS) integrators and Particle Mesh Ewald treatment of long
range electrostatics in ORAC. The modification due the alchemical transformations are highlighted in red.

Steered Molecular Dynamics 75

Alchemical MD pseudo-code

Read coordinates and velocities and compute forces at zero time

Simulation begins

N1 long-ranged non bonded loop begins

Update velocities at ∆tN1/2 using N1 forces

Update velocities at ∆tN1/2 using N1 forces (continued)

N2 intermediate-ranged non bonded loop begins

Update velocities at ∆tN2/2 using N2 forces

N3 Short-ranged non bonded loop begins

Update velocities at ∆tN3/2 using N3 forces

N4 Slow bonded energy shell loop begins (torsion)

Update velocities at ∆tN4/2 using N4 forces

N5 fast bonded energy shell loop begins (stretching bendings)

Update velocities and coordinates at ∆tN5/2 using N5 forces

compute N5 bonded forces at ∆tN5

update velocities bonded forces at ∆tN5 using tN5 forces

N5 Loop ends

Compute N4 bonded forces at ∆tN4

Update velocities bonded forces at ∆tN4 using tN4 forces

N4 Loop ends.

Update externally driven λi and ηi

Compute N3 direct space non-bonded forces, energy and work at ∆tN3

Compute N3 erf forces, energies and work due to Valch

Update the alchemical work using the N3 contribution

Update velocities at ∆tN3 using tN3 forces

N3 Loop ends.

Compute N2 direct space non-bonded forces energy and work at ∆tN2

Compute the Reciprocal lattice forces at ∆tN2

Compute the 12, 13 1nd 14(1− f) erf correction in the zero cell

Subtract the self energy α
π1/2

∑

i[1− λi(t)]
2qi

Update the N2 alchemical work

Update velocities using bonded forces at ∆tN2 using tN2 forces

Update velocities using bonded forces at ∆tN2 using tN2 forces (continued)

N2 Loop ends

Compute N1 direct space non-bonded forces at ∆tN1

Update the N1 alchemical work

Steered Molecular Dynamics 76

Update velocities bonded forces at ∆tN1 using tN1 forces

N1 Loop ends

The computational overhead after the inclusion of the alchemical code in the MD driver is mostly due
to the evaluation of the alchemical work during the non equilibrium driven experiment. As the simulation
proceeds, the alchemical work must be computed in the direct lattice as well as in the reciprocal lattice
with a frequency identical to that of the energy terms. For the reciprocal lattice contribution, one extra
Fast Fourier Transform is required in order to evaluate the reciprocal lattice Particle Mesh Ewald energy
at the previous step. Moreover, the Erf correction Valch (Eq. 9.5) is an entirely new energy term due to
the alchemical species. The efficiency loss of the alchemical code with respect to a non alchemical code
is around 30%, as measured in a short serial simulation of ethanol in water in standard conditions (see
Methods section of the main paper for the simulation parameters),

9.0.3 Fast switching Double Annihilation method

Alchemical transformation in ORAC can be effectively used for the determination of ligand-receptor binding
free energies via the so-called Fast switching Double Annihilation method (FS-DAM).[1] In this approach,
ORAC can be used to produce simultaneously in a parallel application many fast and independent non-
equilibrium Molecular Dynamics trajectories with a continuous dynamical evolution of an externally driven
alchemical coordinate, completing the decoupling of the ligand in a matter of few tens of picoseconds
rather than nanoseconds. In FS-DAM, the requirement of an equilibrium transformation along the entire
alchemical path, that is the major stumbling block in obtaining reliable (converged) free energy values via
the standard equilibrium approach based on free energy perturbation (FEP/REST),[157] is lifted altogether
and the drug-receptor absolute binding free energy can be recovered with reliability from the parallel
computation of the annihilation work distribution. To the latter, a unidirectional free energy estimate can
be applied, on the assumption that any observed non equilibrium work distribution is given by a mixture
of normal distributions, whose components are identical in either direction of the non-equilibrium process,
with weights regulated by the Crooks theorem.[158] In contrast to the FEP/REST approach based on the
equilibrium simulations of many intermediate alchemical states, in FS-DAM, the equilibrium sampling is
required only at the starting fully coupled states (easily attainable using conventional enhanced sampling
simulation methods).

Chapter 10

Input to ORAC

10.1 General Features

Input File. At execution time ORAC reads an input file in free format from the standard input. Each
line of the input is read as a 80 character string and interpreted. If the first character of the input line is a
the line is ignored. In order to be interpreted the input line is parsed in the composing words which are
sequences of characters separated by blanks or commas. Each word represents an instruction which must
be interpreted by the program.

Instructions Set. The instruction set of ORAC includes environments, commands and sub-commands.
An input file is made out of a series of environments. Each environment allows a series of commands
which might use a few sub-commands. Environments resembles Fortran NAMELIST, but have not been
programmed as NAMELIST. The environment name is a string which always starts with a & followed
by capital letters. Each environment ends with the instruction &END. Command names are characters
strings all in capital letters. Each command reads a variable set of parameters which can be characters
and/or numbers (real or integer). There are also commands (structured commands) which are composed
of more than one input line. A structured command end with the instruction END and allows a series of
sub-commands in its inside. Sub-commands are in lower case and can read sub-string of characters and/or
real or integer numbers. In the following section we will describe in details all the supported instruction
allow by ORAC .

Handling External Files. Many ORAC commands provide instructions to open external files. No unit
number needs to be provided as ORAC open sequentially the required files assigning at each file a unit
number according to their order of occurrence in the input file. The file units begin at unit 10 and are
augmented of one unit for each new file.

10.2 Environments, Commands and Sub-commands

The following 10 environments are available:

1 &ANALYSIS retrieves the history file.

2 &INOUT contains commands concerning input/output operations which can be carried out during run
time. The commands allowed within the INOUT environment write history files in different formats
and dump the restart files.

3 &INTEGRATION includes commands defining the integration algorithms to be used during the simula-
tion run.

4 &META includes commands defining the metadynamics simulation.

5 &POTENTIAL includes commands which define the general features of the system interacting potentials.
These features are common to both solute and solvent and concern only the non–bonded interactions.

77

Input to ORAC 78

6 &PROPERTIES includes commands which make ORAC compute run time observables. The commands
allowed within the &PROPERTIES environment can compute on the fly: pair correlation functions,
static structure factors and velocity auto-correlation function. This environment is not supported.

7 &REM setup the Replica Exchange simulation (work only with the parallel version).

8 &RUN defines run time parameters which concern output printing and run averages.

9 &SETUP includes commands concerned with the simulation box setup. In this environment, the
simulation cell parameters, dimensions and symmetry can be initialized. Moreover, files containing
the system coordinates in appropriate format can be provided.

10 &SIMULATION includes commands which define the type of simulation that is to be carried out.
In particular, commands are available to run steepest descent energy minimization, and molecular
dynamics simulations in various ensembles.

11 &SOLUTE includes commands which are concerned with specific aspects of the solute force field and
structure.

12 &SOLVENT includes commands which are concerned with specific aspects of the solvent force field and
structure.

13 &ST setup the Serial Generalized Ensemble simulation (work with both serial and parallel versions).

14 &PARAMETERS includes commands which read the topology and force field parameter files of the
solute. These files contain sufficient information to define the solute topology and to assign potential
parameters to the solute molecules.

Commands’ supporting policy. Since ORAC is free of charge no professional support is provided.
Bugs are fixed, upon request to the E-mail address oracmaster@cecdec.cecam.fr, at the authors earliest
convenience and support may be requested only for environments, commands or sub-commands which are
not marked unsupported in this manual. ORAC is simultaneously an ancient code and a new code which
is still in the developing stage. ORAC has indeed a stable “core” i.e. the part which is officially maintained,
but it also has some obsolete options, some features used for diagnostic or debugging purposes and some
other experimental features not yet fully tested, i.e. the unsupported material. Unsupported features are
by no means essential to the ORAC functioning and may belong to three categories:

� Experimental:
These features have been generally tested on only one or two unix platform (usually OSF1 or HP-
UX), some of them can be used only while running in single time mode, some other can be used
only while running with r-RESPA. These features are documented normally and in the WARNINGS
section they are referred as
Experimental - Unsupported.

� Diagnostic:
These feature were introduced in the developing stage for diagnostics and debugging purposes. In the
current version the diagnostic features are kept since they may turn to be useful to the programmer
when modifying the code. These features are documented normally and in the WARNINGS section
they are referred as
Diagnostic - Unsupported.

� Obsolete features:
These features are no longer used and will be eliminated in the next ORAC release. They are poorly
documented and they are referred as
Obsolete - Unsupported.

Input to ORAC : &ANALYSIS 79

10.2.1 &ANALYSIS

This environment includes commands which define the starting and ending record for reading the trajectory
file (see also TRAJECTORY, DUMP(&INOUT)). The following are allowed commands:

START, STOP, UPDATE

START

NAME
START

SYNOPSIS
START nconf

DESCRIPTION
The trajectory file specified with the command TRAJECTORY(&INOUT) is read in starting from config-
uration nconf.

EXAMPLES
START 1

STOP

NAME
STOP

SYNOPSIS
STOP nconf

DESCRIPTION
The trajectory file specified with the command TRAJECTORY(&INOUT) is read stopping at configuration
nconf.

EXAMPLES
STOP 1000

UPDATE

NAME
UPDATE – Update neighbor list for analysis

SYNOPSIS
UPDATE nconf rcut

DESCRIPTION
Update the neighbor lists for, e.g., radial distribution function calculations, every nconf configurations
using a cut-off of rcut Å.

EXAMPLES
UPDATE 2 10.0 Å.

WARNINGS
Diagnostic - Unsupported

Input to ORAC : &INOUT 80

10.2.2 &INOUT

The environment &INOUT contains commands concerning input/output operations which can be carried
out during run time. The commands within the INOUT environment allow to write history files in different
formats and to dump restart files. The following commands are available:

ASCII, ASCII OUTBOX, DCD, DYNAMIC, DUMP, PLOT, RESTART, SAVE, TRAJECTORY

ASCII

NAME
ASCII – Write solute and solvent coordinates to a history PDB file

SYNOPSIS
ASCII fplot OPEN filename

DESCRIPTION
This command is active both for solute and solvent molecules. It writes a history PDB file containing
the system coordinates. The centers of mass of all molecules are always inside the simulations cell.
The dumping frequency, in fs, is fplot. At each writing the system coordinates in PDB format are
appended to the history file filename.

EXAMPLES
ASCII 10.0 OPEN test.pdb

Write system coordinates to the history pdb file test.pdb every 10 fs.

WARNINGS
Work only during the acquisition phase (see TIME in environment &RUN).

ASCII OUTBOX

NAME
ASCII – Write solute and solvent coordinates to a history PDB file

SYNOPSIS
ASCII fplot OPEN filename

DESCRIPTION
This command is active both for solute and solvent molecules. It writes a history PDB file containing
the system coordinates. The dumping frequency, in fs, is fplot. The centers of mass the molecules
are at the position given by the simulation and may be hence also outside the simulation box. At
each writing the system coordinates in PDB format are appended to the history file filename.

EXAMPLES
ASCII OUTBOX 10.0 OPEN test.pdb

Write system coordinates to the history pdb file test.pdb every 10 fs.

WARNINGS
Work only during the acquisition phase (see TIME in environment &RUN).

Input to ORAC : &INOUT 81

DCD

NAME
DCD – Write solute and solvent coordinates to a trajectory DCD file

SYNOPSIS
DCD fplot OPEN filename
DCD fplot OPEN filename NOH

DESCRIPTION
This command is active both for solute and solvent molecules. It writes a trajectory file containing
the system coordinates and the simulation box parameters. The centers of mass of all molecules are
always inside the simulations cell. The dumping frequency, in fs, is fplot. At each writing the system
coordinates and the simulation box parameters are appended to the trajectory file filename. During a
REM simulation, this file will automatically be complemented by the file filename.rem, where energy
terms involved in the REM exchanges, along with the time step and the replica index, will be printed
with the same frequency. The file filename.rem contains the same information as the one created by
the command PRINT ENERGY(&REM).

EXAMPLES
DCD 10.0 OPEN test.dcd

Write atomic coordinates to the dcd trajectory file test.dcd every 10 fs.
DCD 10.0 OPEN test.dcd NOH

Write coordinates of non-hydrogen atoms to the dcd trajectory file test.dcd every 10 fs.

WARNINGS
Work only during the acquisition phase (see TIME in environment &RUN).

DYNAMIC

NAME
DYNAMIC – Write force field parameters in extended format (see also DEBUG(&RUN))

SYNOPSIS
DYNAMIC OPEN filename

DESCRIPTION
This command prints out to the file filename the parameters of the force field for the solute only in
a verbose format.

EXAMPLES
DYNAMIC OPEN ff.out

DUMP

NAME
DUMP – Write coordinates to a direct access unformatted file with a given frequency. The file is written
in a particular format such that it can be easily retrieved at analysis time “by time” and “by atoms”.

SYNOPSIS
DUMP

....
END

Input to ORAC : &INOUT 82

DESCRIPTION
The DUMP structured command stores the coordinates of the system during a simulation run with a
selected frequency. The coordinates are stored in single precision to save disk space. The following
subcommands may be specified within DUMP:

atom record, occupy, write

• atom record natom rec
Defines the number of atoms per record. Atomic coordinates are dumped to disk as REAL*4.
RecordLenght is defined as lrecl = natom ∗ 3 ∗ 4

• occupy

Allocates disk storage for history file before the simulation is started. occupy fills with ze-
roes the entire direct access history file(s) whose dimensions are controlled by the command
MAXRUN(&RUN) and by the number of atoms in the systems. If occupy is not specified the
history file is expanded at each write request during the simulation. This command is useful
when sharing disk resources with others, preventing the simulation to die because of sudden lack
of disk space.

• write ftime OPEN file name
Defines the dumping frequency and the trajectory auxiliary file name. Coordinates are dumped

to disk every ftime femtoseconds. The auxiliary file file name contains the names for parameters
and trajectory files and must be user supported. At execution time this file is rewritten by the
program which supports extra information, computed according to input specifications, needed
when retrieving the file (see &ANALYSIS). The file file name looks like

system_file_0

traject_file_1

...

traject_file_n

system file is the parameters file where the time steps and and the CO matrix are specified.
All other files are reserved for the trajectory. Partitioning a very long trajectories in many files
allows to overcome, e.g., OS set file size limits or filesystem limits.

EXAMPLES

DUMP

write 30.0 OPEN alk-1.aux

occupy

atom_record 30

END

Writes history file and parameters file as specified in auxiliary file alk-1.aux every 30.0 fs. After
execution the file alk-1.aux is rewritten by the program and looks like

Rewritten by Program

system_file 66 0 0

traject_file_1 1320 20 30

The numbers in columns 1 are the length of the file in records. The numbers in the second columns and
second row are the number of records per point (calculated by the program) and the number of atoms
per record (given in input: see subcommand atom record) in the trajectory file traject file 1. In
the above example the record length is 30*4*3 = 360 bytes, the total size of the file of bytes, allocated
at simulation start, is given by 30*3*4*1230 = 442800, and the total number of bytes dumped per
phase space point is given by 20*30*3*4 = 7200.

Input to ORAC : &INOUT 83

WARNINGS
Work only during the acquisition phase (see TIME in environment &RUN).

PLOT

NAME
PLOT – Write solute coordinates and connection table to a history file in Protein Data Bank Format
(PDB).

SYNOPSIS
PLOT fplot OPEN filename
PLOT FRAGMENT fplot OPEN filename
PLOT ALCHEMY fplot OPEN filename
PLOT CENTER fplot OPEN filename
PLOT STEER fplot OPEN filename
PLOT STEER ANALYTIC fplot OPEN filename
PLOT STEER TEMPERATURE fplot OPEN filename

DESCRIPTION
It writes a history formatted file containing the coordinates of selected part of the solute (and) the
solvent coordinates. The dumping frequency in fs is fplot.

EXAMPLES
PLOT 10.0 OPEN test.pdb

Write coordinates of the backbone atoms of the solute in PDB format every 10 fs to file test.pdb
PLOT CENTER 10.0 OPEN test.pdb

Write coordinates of all atoms of the system in PDB format every 10 fs to file test.pdb. Identical to
ASCII OUTBOX(&INOUT)

PLOT FRAGMENT 10.0 OPEN test.xyz

Write coordinates of a fragment of the solute (in xyz format) selected according the DEF FRAGMENT

(&PROPERTIES) directive every 10 fs to file test.xyz. The fragment is defined as follows:

&PROPERTIES

....

DEF_FRAGMENT 1 38

...

&END

The file test.xyz can be animated using the XMOL public domain molecular graphics program.

This defines a fragment consisting of the first 38 atoms of the solute. The numeral order of the atoms
corresponds to that specified in the topology file (Sec. 10.3).
PLOT STEER 50.0 OPEN wrk.out

write the accumulated work (see Eq. 8.16) to the file wrk.out every 50 fs. The accumulated work at
time t is calculated asW = H(t)−H(0), whereH(t) is the total energy of the microcanonical extended
system, i.e. it includes the energy of the thermostat and/or of the barostat. If the integration time
steps are too large and the simulation shows a energy drift, then the accumulated work includes the
dissipation due to the energy drift of the integrator.
PLOT STEER ANALYTIC 50.0 OPEN WRK.out

Write the accumulated work (see Eq. 8.16) to the file wrk.out every 50 fs. The accumulated work at
time t is calculated analitically according to Eq. 8.16. This option is slightly more computationally
demanding than the previous one, but in this case, the accumulated work is not affected by the
energy drift. The last two commands are to be used in conjunction with the STEER(&RUN) command
and with the commands ADD STR BONDS, ADD STR BENDS, ADD STR TORS (namelist &POTENTIAL) for
defining an external steering potential for SMD.

Input to ORAC : &INOUT 84

PLOT STEER TEMPERATURE 50.0 OPEN WRKTEMP.out

In a steered temperature simulation[150], write the accumulated (adimensional) thermal work every
50 fs to the file WRKTEMP.out. This command must be used in conjunction with the STEER (&RUN)

command for steered molecular dynamics simulations and with the THERMOS(&SIMULATION) com-
mand for running NVT simulations.
PLOT ALCHEMY 50.0 OPEN alchemic.wrk

Print to the file alchemic.wrk the work done during an alchemical transformation. See also com-
mands DEFINE ALCHEMICAL ATOM and STEER ALCHEMY.

RESTART

NAME
RESTART – Write or read an unformatted file from which a simulation might be restarted

SYNOPSIS

RESTART

...

END

DESCRIPTION
The RESTART command may include the following subcommands:

• read filename
read restart configuration from file filename. When this subcommand is active CONTROL(&RUN)
must be non zero and the command READ TPGPRM(&PARAMETERS) must have been entered.

• read multiple restart filename prefix num
This command works only if the code is compiled using the MPI libraries and is not rec-
ognized when running in serial. Each of the nprocs processor will read a restart file named
filename prefix // iproc+num // .rst. So if filename prefix is /u/foo/restarts/ala

and num is 0, then process 0 will read the file /u/foo/restarts/ala0000.rst , process 1 will
read the file /u/foo/restarts/ala0001.rst and so on. This command is useful when running
in parallel multiple steered molecular dynamics trajectories (see also commands ADD STR BONDS,

ADD STR BENDS, ADD STR TORS, of namelist &POTENTIAL.)

• rmr filename prefix num
Same as above.

• write fprint OPEN filename
write restart configuration to file filename every fprint fs.

• write fprint SAVE ALL FILES filename
. write restart configuration to files filename//i//’’.rst’’ every fprint fs. (see also command
read multiple restart).

EXAMPLES

RESTART

read file1.rst

write 1000.0 OPEN file2.rst

END

RESTART

rmr ../RESTARTS/ala 0

END

NB: In the last example valid for parallel runs, the relative path is specified with respect to the
actual pwd of the parallel processes.

Input to ORAC : &INOUT 85

TRAJECTORY

NAME
TRAJECTORY – Read history file

SYNOPSIS
TRAJECTORY filename

DESCRIPTION
The TRAJECTORY command instructs the program to read the history file produced at an earlier time
(see command DUMP in this environment). The auxiliary file filename contains the names of the
parameters’ and history files(s). See also environment &ANALYSIS for retrieving the history file and
environment &PROPERTIES for computing properties form history files.

EXAMPLES
TRAJECTORY file.aux

Input to ORAC : &INTEGRATOR 86

10.2.3 &INTEGRATOR

This environment includes commands defining the integration algorithms to be used during the simulation
run. The following commands are allowed:

MTS RESPA, TIMESTEP.

MTS RESPA

NAME
MTS RESPA – Use a multiple time step integrator

SYNOPSIS
MTS RESPA

....
END

DESCRIPTION
The MTS RESPA structured command opens an environment which includes several subcommands
used to define a multiple time step integrator. The MTS RESPA directive can be specified for NVE
simulations and extended system simulations NHP, NPT and NVT. MTS RESPA is also compatible
with constraints. The following subcommands may be specified within MTS RESPA:

step dirty very cold start energy then die k-ewald test-times p test s test

• step type n [r [hl [dr]]] [reciprocal]

The command step is used to define the potential subdivision and the corresponding time
steps. The string type can be either “intra” or “nonbond”: in the former case the command
defines an intramolecular shell, whereas in the latter a nonbonded shell is defined. If “intra” is
specified only one keyword is expected, i.e. the integer n. When two subcommand of the type
- step intra n - are entered, the first is assumed to refer to the faster intramolecular subsystem
(the Vn0 subsystem as defined in eq. 4.3 with n = n0) and the second is assumed to define the
slower intramolecular subsystem (the Vn1 subsystem as defined in eq. 4.3 with n = n1). If only
one subcommand - step intra n - is entered then n0 is set to 1 and and n1 = n. If no - step
intra n subcommand is given then n1 = n0 = 1.

If the first argument of the step subcommand is the string “nonbond” then at least an integer
and a real are expected. The integer n is the time step dividing factor of the nonbonded shell
while the real argument equals the shell upper radius. Two more optional real arguments can
be defined, i.e. the healing length at the upper shell radius and the corresponding neighbor
list offset. The defaults value of the healing length are As for the intra shell, the more rapidly
varying nonbonded shells are entered first. If three - step nonbond - subcommands are entered,
then the first refers to the Vm, the second to the Vl and the third to the Vh subsystems, with n
being m, l, 1 such that ∆th = ∆t, ∆tl = ∆th/l, ∆tm = ∆tl/m, (see Table 4.3). n for the last
nonbonded shell is set automatically to 1 disregarding its actual value. If two shells are entered
then only two intermolecular time steps are used, i.e. n = m and l = 1. If one shell is entered
only one time step is defined and m = l = 1. When using Ewald, the Vqr term (Eq. 4.21) in
the reciprocal lattice is assigned by entering the string reciprocal as the last argument of a -
step nonbond directive.

• k-ewald kl lambdakl km lambdakm – Obsolete - Unsupported

kl and km define the shells in reciprocal space. Wave vectors k = |k| such that rkcut ≥ k > kl,
kl ≥ k > km, and km ≥ k > 0 are assigned to the h-shell l-shell and m-shell, respectively.
lambdakm, lambdakl are the upper healing lengths for the reciprocal space m and l shells and
the lower healing length for the reciprocal space h and l shells, respectively.

Input to ORAC : &INTEGRATOR 87

Warning: To be used only when on is specified in the directive EWALD (environment &POTENTIAL);
rkcut must be defined in the directive EWALD). The reciprocal lattice assignment is best done
via the keyword reciprocal of the command step nonbond.

• test-times OPEN filename – Diagnostic - Unsupported

Produce the time record of the potential and kinetic energies at the end of the propagation step
(i.e. at intervals of ∆th fs). The following is the format used for dumping the energies:

WRITE(ktest,300) tim,utot,ustot,uptot,upstot,ektot,pottot

300 FORMAT(’ TotalEnergy’,f12.3,6f15.3)

Where tim,utot,ustot,uptot,upstot,ektot,pottot are the values of the time, total energy,
solvent potential energy, solute potential energy, solvent-solute potential energy, total kinetic
energy, total potential energy. Time is given in fs and all energies in KJ/mole. The energy

conservation ratio R ≡ ∆E/∆K and the drift D = (E−〈E〉)t
t(t−〈t〉) are printed periodically (every

1000 ∗∆th) and at the end of the simulation onto the file filename.

• dirty – Obsolete - Unsupported

Scales velocities to the initial total energy E(0) during production stage. The scaling is done
randomly with a Monte Carlo algorithm.

• p test n1 n2 n3 n4 n5 – Diagnostic - Unsupported

To be used in conjunction with subcommand test-times: print out time record of the subsys-
tems potential and forces for the protein for atoms n1 n2 n3 n4 n5.

• s test n1 n2 n3 – Diagnostic - Unsupported

To be used in conjunction with subcommand test-times: print out time record of the subsys-
tems potential and forces for the solvent for atoms n1 n2 n3.

• very cold start rmax
This option is useful when minimizing a protein in a highly unfavorable configuration. The real
argument rmax is the maximum allowed displacement (in Å) for any atom when integrating
the equations of motion irrespective of the intensity of the force on that atom. This constraint
avoid blowing up of the simulation.

• energy then die

Print out energies and then stops.

EXAMPLES

step intra 2

step intra 2

step nonbond 4 4.2

step nonbond 4 7.3 reciprocal

step nonbond 1 9.7

Here five time steps are defined, three for nonbonded potentials and two for intramolecular potential.
The largest timestep ∆th is defined by the command TIMESTEP in this environment (see above) and
refers to the nonbonded subsystem with shell in the range 7.3 − 9.7 Å. We then have ∆tl = ∆th/4
referring to the 4.2− 7.3 Å shell and ∆tl = ∆th/4/4 referring to the 0− 4.2 Å shell. The reciprocal
potential is assigned to the intermediate 4.2 − 7.3 Å shell. The two intramolecular shells have time
steps ∆tn1 = ∆th/4/4/2 and ∆tn0 = ∆th/4/4/2/2.

step intra 2

step nonbond 3 6.5 reciprocal

step nonbond 1 9.5

test-times OPEN file-tests

Here only one intramolecular and two intermolecular time steps are defined. The reciprocal (PME
or standard) contribution is assigned to the fastest intermolecular shell. Energy records are printed
onto the file file-tests each ∆th femtoseconds.

Input to ORAC : &INTEGRATOR 88

DEFAULTS

step intra 1

step intra 1

step nonbond 1 4.1 0.3 0.35

step nonbond 1 7.3 0.3 0.45 reciprocal

step nonbond 1 9.7 0.3 1.5

WARNINGS

1 When standard Ewald is used and the reciprocal space contribution is subdivided in k–shells,
the intramolecular term of Eq. 4.21 is always assigned to the fastest k–shell. This may cause
instability of the integration. Subdivision of the reciprocal lattice contribution with standard
Ewald, although technically possible, is not recommended.

2 The directive dirty makes fast integrators stable but may severely affect dynamical properties.

TIMESTEP

NAME
TIMESTEP – Define the simulation time step

SYNOPSIS
TIMESTEP time

DESCRIPTION
The argument time represents the integration time step used during the run. As integration of the
equations of motion is always done with the r-RESPA algorithm, time is the outer most time step.
time must be given in units of femtoseconds.

EXAMPLES
TIMESTEP 9.0

Input to ORAC : &META 89

10.2.4 &META

Define run time parameters concerning Metadynamics Simulation. The following commands are available:

ADD BOND, ADD BEND, ADD TORS, RATE, READ, SAVE

ADD BOND

NAME
ADD BOND – Add the distance between two atoms to the list of reaction coordinates.

SYNOPSIS
ADD BOND iat1 iat2 w

DESCRIPTION
This command adds to the list of the reaction coordinates of a metadynamics simulation the distance
between atom iat1 and iat2. The numeric order of the atom indices iat1, iat2 is that specified in the
topology file (see 10.3). The repulsive potential terms deposed in the space of the reaction coordinates
during the simulation (see 6.3.3) will have a width w (in Å) in the direction of this distance.

EXAMPLES
ADD BOND 1 12 0.2

Add the distance between atom 1 and atom 12 to the list of the reaction coordinates.

ADD BEND

NAME
ADD BEND – Add the bending angle between three atoms to the list of the reaction coordinates.

SYNOPSIS
ADD BEND iat1 iat2 iat3 w

DESCRIPTION
This command adds to the list of the reaction coordinates of a metadynamics simulation the bending
angle between atom iat1, iat2 and iat3. The central atom of the bending is iat2. The numeric order
of the atom indices iat1, iat2, iat3 is that specified in the topology file (see 10.3). The repulsive
potential terms deposed in the space of the reaction coordinates during the simulation (see 6.3.3) will
have a width w (in arc degrees) in the direction of this angle.

EXAMPLES
ADD BEND 1 7 12 4.0

Add the bending angle between atom 1, atom 7 and atom 12 to the list of the reaction coordinates.

ADD TORS

NAME
ADD TORS – Add the torsional angle between four atoms to the list of the reaction coordinates.

SYNOPSIS
ADD TORS iat1 iat2 iat3 iat4 w

Input to ORAC : &META 90

DESCRIPTION
This command adds to the list of the reaction coordinates of a metadynamics simulation the torsional
angle between atom iat1, iat2, iat3 and iat4. The axis of the torsion is defined by the atoms iat2 and
iat3. The numeric order of the atom indices iat1, iat2, iat3, iat4 is that specified in the topology file
(see 10.3). The repulsive potential terms deposed in the space of the reaction coordinates during the
simulation (see 6.3.3) will have a width w (in arc degrees) in the direction of this angle.

EXAMPLES
ADD TORS 1 5 8 11 4.0

Add the torsional angle between atom 1, atom 5, atom 8 and atom 11 to the list of the reaction
coordinates.

RATE

NAME
RATE – Define the deposition rate of a metadynamics run.

SYNOPSIS
RATE mtime [mheight]

DESCRIPTION
This command defines the deposition frequency mtime (in fs) and the height mheight (in kJ mol−1)
of the repulsive potential terms deposed during a metadynamics run. If mheight is not specified, then
a zero height is assumed.

EXAMPLES
RATE 100.0 0.05

Depose an hill of height 0.05 kJ mol−1 every 100 fs.

READ

NAME
READ – Read a trajectory from a previous metadynamics run.

SYNOPSIS
READ filename

DESCRIPTION
When present, the program reads a trajectory filename from a previous metadynamics run.

EXAMPLES
READ old traj.out

Read trajectory from file old traj.out.

WARNINGS
The metadynamics parameters of the previous and of the new simulation must be the same in order
to obtain meaningful results.

Input to ORAC : &META 91

TEMPERED

NAME
TEMPERED – During a metadynamics simulation, adds an hill to the biasing potential with a decreasing
probability.

SYNOPSIS
TEMPERED T ′

DESCRIPTION
When present, the program adds an hill to the current biasing potential with a probability given by
P (acc) = exp(−Vmax(t))/kBT

′, where Vmax(t) is the maximum value of the potential V (s, t) at time
t and T ′ is a user-defined temperature.

EXAMPLES
TEMPERED 1000.0

Run a tempered metadynamics simulation adding new potential terms with a probability that depends
on the ratio Vmax(t)/kB ∗ 1000.0.

DEFAULTS
T ′ 0.0

WTEMPERED

NAME
WTEMPERED – During a metadynamics simulation, adds an hill to the biasing potential with a decreas-
ing probability, following the well-tempered metadynamics algorithm.

SYNOPSIS
WTEMPERED T ′

DESCRIPTION
When present, the program adds an hill to the current biasing potential with a probability given
by P (acc) = exp(−V (s, t))/kBT

′, where V (s, t) is the value of the biasing potential and T ′ is a
user-defined temperature.

EXAMPLES
WTEMPERED 1000.0

Run a tempered metadynamics simulation adding new potential terms with a probability that depends
on the ratio V (s, t)/kB ∗ 1000.0.

DEFAULTS
T ′ 0.0

SAVE

NAME
SAVE – Save periodically a trajectory file during a metadynamics run.

SYNOPSIS
SAVE fprint [filename]

DESCRIPTION
When present, the program writes the trajectory in the space of the reaction coordinates, sampled
with the frequency defined through the command RATE, to file filename every fprint fs. The first line
of the file contains the number of hills deposed when the file was dumped and the height and the

Input to ORAC : &META 92

width along each reaction coordinate. If at the beginning of the run a trajectory file from a previous
metadynamics simulation was read through the command READ, then the program prints the whole
trajectory.

EXAMPLES
SAVE 10000.0 traj.out

Print trajectory in file traj.out every 10 ps.

Input to ORAC : &PARAMETERS 93

10.2.5 &PARAMETERS

This environment includes commands which read the topology and force field parameter files of the solute.
These files described in Sec. 10.3 contain sufficient information to define the solute topology and to assign
potential parameters to the solute molecules. The following commands are allowed:

ADD TPG, JOIN, PRINT TOPOLOGY, READ TPGPRM READ PRM ASCII, READ TPG ASCII, REPL RESIDUE,

WRITE TPGPRM BIN

ADD TPG SOLUTE

NAME
ADD TPG SOLUTE – Add topology components to the current solute molecule

SYNOPSIS

ADD_TPG SOLUTE

...

...

END

DESCRIPTION
The structured command ADD TPG SOLUTE opens an environment including commands which add
extra bonds, proper and improper torsions to the topology of the current solute molecule(s). The
command is closed by END. This command must be used to connect atoms belonging to different
residues of the current molecule. For instance to connect through a sulfur bridge two cysteine residues
or to bind ligands to a metal atom.

• bond 1ata 2atb residue num1 num2
Add a bond to the topology of the current solute molecule which connect atom ata of residue
number num1 with atom atb of residue number num2. The number 1 and 2 refer to residue num1
and num2, respectively. The atom label ata and atb must be defined in the general formatted
topology file as labels of actual atoms of residue number num1 and num2. Here, residue numbers
are the sequential numbers of the residues as given in input to command JOIN.

• torsion 1ata 1atb 2atc 2atd residue num1 num2
Add a proper torsion to the topology of the current solute molecule. The number 1 and 2 refer
to residue num1 and num2, respectively. Atom ata and atb belong to residue number num1,
while atoms atc and atd are on residue number num2. Additional torsion having three atoms
on one residue and one atom on the other residue are also allowed. Here, residue numbers are
the sequential numbers of the residues as given in input to command JOIN. If the command
AUTO DIHEDRAL of the environment &SOLUTE is used, no extra torsions need to be added to the
current topology.

• i torsion 1ata 1atb 2atc 2atd residue num1 num2
Add an improper torsion to the topology of the current solute molecule. The number 1 and
2 refer to residue numbers num1 and num2, respectively. Atom ata and atb belong to residue
number num1, while atoms atc and atd are on residue number num2. Additional improper
torsions having three atoms on one residue and one atom on the other residue are also allowed.
Here, residue numbers are the sequential numbers of the residues as given in input to command
JOIN.

EXAMPLES

Input to ORAC : &PARAMETERS 94

ADD_TPG SOLUTE

bond 1sg 2sg residue 6 127

bond 1sg 2sg residue 30 115

bond 1sg 2sg residue 64 80

bond 1sg 2sg residue 76 94

END

Add extra bonds to the current topology. In this example, the four sulfur bridges of hen egg lysozyme
are given.

WARNINGS
This command is inactive when used in conjunction with READ TPGPRM. To have the desired effect,
the ADD TPG environment must be used in conjunction with READ TPG ASCII and READ PRM ASCII.

JOIN

NAME
JOIN – Provide the list of residues forming the current solute or solvent molecule(s).

SYNOPSIS

JOIN [SOLUTE | SOLVENT]

...

...

END

DESCRIPTION
The structured command JOIN reads the sequential list of labels corresponding to the residues forming
the solute molecule(s). The list of residues begins at the line following JOIN. The end of this list
is signaled by END on the line following the last residue label. Each residue labels must have been
defined in the general formatted topology file read by READ TPG ASCII. See Sec. 10.3 for explanations.

EXAMPLES

JOIN SOLUTE

lys-h val phe gly arg cys glu leu ala ala ala met lys

arg hsd gly leu asp asn tyr arg gly tyr ser leu gly

asn trp val cys ala ala lys phe glu ser asn phe asn

thr gln ala thr asn arg asn thr asp gly ser thr asp

tyr gly ile leu gln ile asn ser arg trp trp cys asn

asp gly arg thr pro gly ser arg asn leu cys asn ile

pro cys ser ala leu leu ser ser asp ile thr ala ser

val asn cys ala lys lys ile val ser asp gly asn gly

met asn ala trp val ala trp arg asn arg cys lys gly

thr asp val gln ala trp ile arg gly cys arg leu-o

END

Sequence of residues for hen-egg lysozyme. All labels must have been defined in the general formatted
topology file.

JOIN SOLVENT

hoh

END

Defines the topology of the solvent

Input to ORAC : &PARAMETERS 95

WARNINGS
The command is inactive when used in conjunction with READ TPGPRM. To have the desired effect,
the JOIN environment must be used in conjunction with READ TPG ASCII, READ PRM ASCII and, op-
tionally, the REPL RESIDUE environment.

PRINT TOPOLOGY

NAME
PRINT TOPOLOGY – Print topology components of the current solute molecule.

SYNOPSIS

PRINT_TOPOLOGY

...

END

DESCRIPTION
PRINT TOPOLOGY is a structured command to be used for printing out part of the topology and
potential information for the solute molecule. The following subcommands may be specified within
PRINT TOPOLOGY:

atoms bendings bonds constraints I-torsions P-torsions sequence

• bonds

Print the bonds list.

• bendings

Print the bendings list.

• constraints

Print the bond constraints list.

• I-torsions

Print the proper torsion list.

• P-torsions

Print the improper torsion list.

• sequence

Print info on the units sequence of both solvent and solute

EXAMPLES

PRINT_TOPOLOGY

bonds

P-torsions

END

Input to ORAC : &PARAMETERS 96

READ TPGPRM

NAME
READ TPGPRM – Read parameter and topology file

SYNOPSIS
READ TPGPRM filename [no warning]

DESCRIPTION
The command reads the force field parameters and topology file filename. Starting form release
6.0, the parameters and topology file is a text file for ensuring portability. This file contains the
topology and force field parameters tables. It is created with the commands WRITE TPGPRM BIN,
READ TPG ASCII and READ PRM ASCII. The tables contained in file filename are associated only with
the current solute molecule(s) and can only be used for that (those) molecule(s). In alternative to
the command READ TPGPRM, READ TPG ASCII and READ PRM ASCII, which read the general formatted
topology and parameters files, can be used. Since the use of the latter commands implies the calcula-
tion of the topology and parameters tables for the current solute molecule, it is advisable to use them
only a first time to create the unformatted file read by READ TPGPRM. When READ TPGPRM is entered,
all the topology of the system is read in from the specified file and the topology commands such as
JOIN SOLUTE JOIN SOLVENT or ADD TPG are ignored. Also the environments &SOLUTE, &SOLVENT,

&SETUP need not to be specified.

EXAMPLES

&PARAMETERS

READ_TPGPRM_BIN benz.prmtpg

&END

&SIMULATION

...

&END

&INOUT

RESTART 50.0 OPEN benz.rst

&END

&INTEGRATOR

...

&END

&POTENTIAL

..

&END

&RUN

CONTROL 1

..

&END

In this example all topology information and the coordinates of all atoms in the system are taken
in care by only three directives: READ TPGPRM BIN, RESTART, CONTROL. The files benz.prmtpg and
benz.rst which contains the topology and the coordinates, respectively must have been produced
with a previous run.

READ PRM ASCII

NAME
READ PRM ASCII – Read a general formatted parameters file

Input to ORAC : &PARAMETERS 97

SYNOPSIS
READ PRM ASCII filename

DESCRIPTION
Here filename is the ASCII parameter file. The general formatted force field parameters file is
described in Sec. 10.3. In this file one must define each potential energy parameter of the given force
field defined in Eq. 4.3. It must be consistent with the general topology file read by READ TPG ASCII.
The same parameters file can be used for many different solute molecules. This is the reason of the
word “general”.

EXAMPLES
READ PRM ASCII forcefield.prm

Read the general formatted parameters file forcefield.prm.

WARNINGS
Must be used in conjunction with command READ TPG ASCII.

READ TPG ASCII

NAME
READ TPG ASCII – Read a general formatted topology file

SYNOPSIS
READ TPG ASCII filename

DESCRIPTION
Here filename is the ASCII topology file. The general topology file is described in Sec. 10.3. It must
define each residue contained in the current solute molecule. The same topology file can be used
for many different solute molecules. This is the reason of the word “general”. It Must be used in
conjunction with command READ PRM ASCII.

EXAMPLES
READ TPG ASCII forcefield.tpg

Read the formatted topology file forcefield.tpg.

EXAMPLES
&PARAMETERS .. READ TPG ASCII amber99sb-ildn.tpg

READ TPG ASCII aspirin-p.tpg

READ PRM ASCII amber99sb-ildn.prm

READ PRM ASCII aspirin-p.prm

.. &END

In ligand-protein systems it is useful to specify two topology and parameter files for the ligand and
the protein as in the example above. The aspirin-p.tpg and aspirin-p.prm files for the ligand
can be generated with the primaDORAC web application (www.chim.unifi.it/orac/primadorac).

WARNINGS

REPL RESIDUE

NAME
REPL RESIDUE – Replace or add the topology of a certain residue

SYNOPSIS

Input to ORAC : &PARAMETERS 98

REPL_RESIDUE

...

...

END

DESCRIPTION
The command REPL RESIDUE opens an environment which includes the same series of commands and
subcommands accepted by the general formatted topology file described in Sec. 10.3.

EXAMPLES

REPL_RESIDUE

RESIDUE gly (Total Charge = 0.0)

atoms

group

n n -0.41570

hn h 0.27190

group

ca ct -0.02520

ha1 h1 0.06980

ha2 h1 0.06980

group

c c 0.59730

o o -0.56790

end

bonds

n hn n ca o c c ca

ca ha1 ca ha2

end

imphd

-c ca n hn ca +n c o

end

termatom n c

backbone n ca c

RESIDUE_END

END

Replace or add the topology for residue gly.

WRITE TPGPRM BIN

NAME
WRITE TPGPRM BIN – Write an unformatted parameter and topology file

SYNOPSIS
WRITE TPGPRM BIN filename

DESCRIPTION
This command must be used in combination with READ TPG ASCII and READ PRM ASCII. It produces
the file filename containing the force field and topology tables associated with the current solute
molecule(s) which can be reread in subsequent runs by the command READ TPGPRM.

Input to ORAC : &PARAMETERS 99

EXAMPLES
WRITE TPGPRM BIN molecule1.prmtpg

Write the unformatted topology and parameter file for the current solute molecule that can be read
by READ TPGPRM.

WARNINGS
Must be used in conjunction with commands READ TPG ASCII and READ PRM ASCII.

Input to ORAC : &POTENTIAL 100

10.2.6 &POTENTIAL

The environment &POTENTIAL includes commands which define the general features of the system inter-
acting potentials. These features are common to both solute and solvent and concern both bonded and
non–bonded interactions. The following are allowed commands:

ADD STR BONDS, ADD STR BENDS, ADD STR COM, ADD STR TORS, ADJUST BONDS, AUTO DIHEDRAL,

BENDING, CHECK COORD OFF CONSTRAINT, CUTOFF, ERF CORR, ERFC SPLINE,

DEFINE ALCHEMICAL ATOM EWALD, GROUP CUTOFF, I-TORSION, JORGENSEN, KEEP BONDS, LJ-FUDGE,

LINKED CELL, QQ FUDGE, SELECT DIHEDRAL, SOFT-CORE, SHIFT-POT, STEER PATH, STRETCHING,

UPDATE, VERLET LIST

ADD STR BONDS

NAME
ADD STR BONDS – Add a stretching potential between two target atoms.

SYNOPSIS
ADD STR BONDS iat1 iat2 k r0 [rτ]

DESCRIPTION
This command can be used to impose an additional stretching constraint between atom iat1 and iat2
of the solute. The numeric order of the solute atom indices iat1, iat2 is that specified in the topology
file (see 10.3). The added stretching potential has force constant k (in Kcal/mol/Å2) and equilibrium
distance r0 (in Å). If rτ is also specified, then the added stretching potential is time dependent and
rτ is the equilibrium distance after the steering time τ (see STEER(&RUN)) command for the definition
of the steering time in a SMD simulation)

WARNINGS
If the chosen r0 is very different from the actual value of the distance |riat1 − riat2| at time 0, a very
large force is experienced by the atoms in involved in the added stretching and the simulation may
catastrophically diverge after few steps.

EXAMPLES

– Example 1.

ADD_STR_BONDS 1 104 400. 31.5

– Example 2.

&PARAMETERS

READ_TPGPRM_BIN ala10_A.prmtpg

&END

...

&POTENTIAL

...

ADD_STR_BONDS 1 104 400. 31.5 15.5

..

&END

Input to ORAC : &POTENTIAL 101

....

...

&RUN

CONTROL 2

...

REJECT 0.0

STEER 10000. 50000.

TIME 50009.0

...

&END

..

&INOUT

RESTART

rmr ../RESTART/ala10 0

&END

In the first example a stretching constraint is imposed between atom 1 and atom 104 of the so-
lute. In the second example a time-dependent driving potential is applied to the same atoms of the
solute. The equilibrium distance of such harmonic driving potential move at constant velocity in
τ = 40 ps (starting at t=10 ps) between r0 = 31.5 and rτ = 15.5. Since the directive rmr (or
read multiple restart) is issued in the RESTART(&INOUT) command, the example is assumed to
run in parallel. Each process reads a different restart file named ala10iproc.rst in the ../RESTART
directory. Note that the path of the restart files is specified with respect to the actual value of the
pwd command when the parallel version is executed (i.e. in the PARxxxx directories).

ADD STR BENDS

NAME
ADD STR BENDS – Add a bending potential between three target atoms.

SYNOPSIS
ADD STR BENDS iat1 iat2 iat2 k α0 [alphaτ]

DESCRIPTION
This command can be used to impose an additional bending constraint between atom iat1, iat2 and
iat3 of the solute. The numeric order of the solute atom indices iat1, iat2 is that specified in the
topology file (see Sec. 10.3). The central atom of the bending is ita2. The added bending potential
has force constant k (in Kcal/mol/rad2) and equilibrium bending angle α0 (in degrees). If ατ is also
specified, then the added bending potential is time dependent and ατ is the equilibrium bending
angle after the steering time τ (see STEER(&RUN)) command for the definition of the steering time in
a SMD simulation)

WARNINGS
If the chosen α0 is very different from the actual value of the bending angle at time 0, a very large force
is experienced by the atoms in involved in the added bending and the simulation may catastrophically
diverge after few steps.

EXAMPLES

– Example 1.

ADD_STR_BENDS 1 50 104 400. 180.0

Input to ORAC : &POTENTIAL 102

– Example 2.

&POTENTIAL

...

ADD_STR_BENDS 1 50 104 400. 180.0 90.0

..

&END

....

...

&RUN

...

STEER 10000. 50000.

...

&END

In the first example a bending constraint is imposed between atom 1, atom 50, and atom 104 of the
solute. In the second example a time-dependent driving potential is applied to the same atoms of the
solute. The equilibrium bending angle of such harmonic driving potential move at constant velocity
in τ = 40 ps (starting at t=10 ps) between α0 = 180.0 and ατ = 90.0.

ADD STR COM

NAME
ADD STR COM – Add a bond potential between the Centers of Mass (COMs) of two selected group of
atoms.

SYNOPSIS
ADD STR COM

ligand ilig1 ilig2

target itar1 itar2

force kcom r0com [r1com]

END

DESCRIPTION
This command can be used to impose an additional bond restraint potential (with force constant
kcom [in kcal mol−1] and equilibrium distance r0com) (in Å) between the COM of a “ligand”,
defined by the atoms subset ilig1-ilig2, and the COM of a “target”, defined by the the atoms subset
itar1-itar2. If the optional parameter r1com is also specified then a steered molecular dynamics is
implied (see also STEER command).

WARNINGS
Experimental - Unsupported

EXAMPLES

– Example 1

&POTENTIAL

...

ADD_STR_COM

ligand 1 10

target 11 1500

Input to ORAC : &POTENTIAL 103

force 10.0 5.0

END

...

&END

– Example 2.

&POTENTIAL

...

ADD_STR_COM

ligand 1 10

target 11 1500

force 10.0 5.0 10.0

END

..

&END

....

...

&RUN

...

STEER 10000. 50000.

...

&END

In the first example a COM-COM restraint at r= 5.0 Å is imposed between the ligand (first 10
atoms as labeled in the output PDB) and a 1489 atoms target with atomic labels going from 11 to
1500. In the second example the restraint potential is steered at constant speed from 5 to 10 Å in
the time span 10 - 50 ps.

ADD STR TORS

NAME
ADD STR TORS – Add a harmonic bending potential between three target atoms.

SYNOPSIS
ADD STR TORS iat1 iat2 iat3 iat3 k θ0 [θτ]

DESCRIPTION
This command can be used to impose an additional (harmonic) torsional constraint between atoms
iat1, iat2, iat3 and iat4 of the solute. The axis of the torsion is defined by the atoms iat2, iat3.
The numeric order of the solute atom indices iat1, iat2, iat3, iat4 is that specified in the topology
file (see Sec. 10.3). The added torsional potential has force constant k (in Kcal/mol/rad2) and
equilibrium dihedral angle θ0 (in degrees). If θτ is also specified, then the added torsional potential is
time dependent and θτ is the equilibrium dihedral angle after the steering time τ (see STEER(&RUN))
command for the definition of the steering time in a SMD simulation)

WARNINGS
If the chosen θ0 is very different from the actual value of the dihedral angle at time 0, a very large force
is experienced by the atoms in involved in the added bending and the simulation may catastrophically
diverge after few steps.

EXAMPLES

Input to ORAC : &POTENTIAL 104

– Example 1.

ADD_STR_TORS 1 50 70 104 400. 60.0

– Example 2.

&POTENTIAL

...

ADD_STR_TORS 1 50 70 104 400. 60.0 90.0

..

&END

....

...

&RUN

...

STEER 10000. 50000.

...

&END

In the first example a torsional constraint is imposed between atom 1, atom 50, atom 70 and atom
104 of the solute. In the second example a time-dependent driving potential is applied to the same
atoms of the solute. The equilibrium dihedral angle of such harmonic driving potential move at
constant velocity in τ = 40 ps (starting at t=10 ps) between θ0 = 60 and θτ = 90 degrees.

ADJUST BONDS

NAME
ADJUST BONDS – Constraints bond lengths to starting values.

SYNOPSIS
ADJUST BONDS

DESCRIPTION
This command should be specified when bond constraints are imposed to the system (see command
STRETCHING and CONSTRAINT in this environment). If specified, all bonds to be constrained are
constrained to the lengths specified in the force field parameter file (see sec 10.3.1 PDB file

DEFAULTS
ADJUST BONDS is .TRUE.

AUTO DIHEDRAL

NAME
AUTO DIHEDRAL – Include all the proper torsion angle in the interaction potential

SYNOPSIS
AUTO DIHEDRAL

WARNINGS
Obsolete - Unsupported

Input to ORAC : &POTENTIAL 105

BENDING

NAME
BENDING – set constraints on bendings.

SYNOPSIS
BENDING on

BENDING off

DESCRIPTION
With the argument on, this command includes harmonic bending potentials in the total solute po-
tential. Conversely, if the argument is off all the bending of the solute molecules are constrained.

DEFAULTS
BENDING off

WARNINGS
Obsolete - Unsupported

CHECK COORD OFF

NAME
CHECK COORD OFF

SYNOPSIS
CHECK COORD OFF

DESCRIPTION
This option is used to suppress check on initial atomic coordinates.

CONSTRAINT

NAME
CONSTRAINT – Constrain bendings.

SYNOPSIS
CONSTRAINT SHAKE

CONSTRAINT MIM mimlim

DESCRIPTION
Select procedure for fulfilling constraints. With the argument SHAKE ORAC uses SHAKE. With argu-
ment MIM ORAC uses the matrix inversion method (MIM). In the latter case the maximum physical
dimension of the constraint matrix mimlim must be specified. MIM is best used in conjunction with
STRETCHING HEAVY

DEFAULTS
BENDING off

Input to ORAC : &POTENTIAL 106

CUTOFF

NAME
CUTOFF

SYNOPSIS
CUTOFF rspoff

WARNINGS
Used in the minimization routine only.

DEFINE ALCHEMICAL ATOM

NAME
DEFINE ALCHEMICAL ATOM

SYNOPSIS
DEFINE ALCHEMICAL ATOM iat1 iat2 on/off

DESCRIPTION
Define an alchemical segment for the solute (N.B. Only solute atoms can be of alchemical types). iat1
and iat3 are the index of the first and last atom of the alchemical segment Alchemical segments can
either be switched on or switched off. The alchemical atoms must be part of the starting PDB file
whether they interact of not with the actual atoms. This command is used along with the command
STEER PATH ALCHEMY (to define the time protocol of the transformation) and the command PLOT

ALCHMEY (to printing out the work done during the transformation).

EXAMPLES

– Example 1.
DEFINE ALCHEMICAL ATOM 1 10 on

... STEER PATH ALCHEMY alchemy.time.on

atoms from 1 to 10 of the solute will be switched on with a time protocol specified in the file
alchemy.time.on

– Example 2.

DEFINE ALCHEMICAL ATOM 1 10 off

... STEER PATH ALCHEMY alchemy.time.off

atoms from 1 to 10 of the solute will be switched off with a time protocol specified in the file
alchemy.time.off

– Example 3.
DEFINE ALCHEMICAL ATOM 1 10 on

DEFINE ALCHEMICAL ATOM 10 20 off

... STEER PATH ALCHEMY alchemy.time.on.off

atoms from 1 to 10 of the solute will be switched on and atoms from 10 to 20 of the solute will
be switched off each with a time protocol specified in the common file alchemy.time.on.off

Input to ORAC : &POTENTIAL 107

ERF CORR

NAME
ERF CORR – Implements intramolecular Ewald correction

SYNOPSIS
ERF CORR nbin rlow rup

DESCRIPTION
Adds correction of Eq. 4.47, evaluated only for excluded intra–molecular contacts (stretching, bending
and “fudged” part of 1-4 interactions) to account for reciprocal space cutoff error. The function χ(r, α)
is B-splined using nbin points in the range rlow < r < rup.

EXAMPLES
ERF CORR 2000 0.8 4.5

WARNINGS
Choose carefully rlow and rup. If an intramolecular distance outside the range is found during
execution, unpredictable results may occur.

ERFC SPLINE

NAME
ERFC SPLINE – Use spline to compute the complementary error function used for electrostatics in
direct space

SYNOPSIS
ERFC SPLINE erfc bin
ERFC SPLINE erfc bin corrected rcut

DESCRIPTION
By default ORAC uses a 5 parameter expansion to compute the complementary error function required
by the direct space electrostatic potential (Vqd in Eq. 4.20). With the command ERFC SPLINE this
expansion is replaced by a B-spline. The function erfc (x) is splined from x = 0 to x = 1.1αrcut,
where α and rcut are the Ewald sum parameter and the radial cutoff, respectively. The argument
erfc bin is the bin size of the spline. The usage of the ERFC SPLINE option is useful when running
on workstations where a saving of 10-15 % in CPU time is usually obtained. ERFC SPLINE may also
be used to speed up the Ewald method. By specifying the directive corrected ORAC corrects for
the reciprocal lattice cutoff for all intermolecular interactions in the direct lattice using the same
oscillating potential of Eq. (4.47) (see Sec. 4.4) used for correcting the intra–molecular potential
(see ERF CORR in this environment. This allows the use shorter cutoffs in reciprocal space (or coarser
grids in SPME). The argument rcut corresponds to the maximum distance for the spline table. Must
be larger than the current cutoff (see examples).

EXAMPLES
ERFC SPLINE 0.01

A B-spline is used to evaluate the direct space sum. To evaluate the B-spline the original function is
computed on a grid of 0.01 bin size.
ERFC SPLINE 0.01 corrected 14.0

The splined potential is now given by standard the direct lattice Ewald term plus the χ(r, α) potential
defined in Eq. (see also command ERF CORR in this environment). The B-spline look up table is done
for distances 0 < r < 14.

WARNINGS
rcut is an atomic cutoff. Always define rcut large enough to assure that all atoms are included
within rcut for any molecular pair. E. g., if rh the largest cutoff defined in the structured command

Input to ORAC : &POTENTIAL 108

MTS RESPA (&INTEGRATOR) and the molecule has a maximum extension in any possible direction of
∆R, choose rcut = rh +∆R

EWALD

NAME
EWALD – Determine if standard Ewald or particle mesh Ewald sum must be used

SYNOPSIS
EWALD off

EWALD ON alphal rkcut
EWALD PME alphal ftt1 ftt2 ftt3 order
EWALD REMOVE MOMENTUM

DESCRIPTION
As described in Sec. 4.1 ORAC can handle the electrostatic interactions by Ewald summation. If the
argument to the command is on followed by alphal and rkcut, standard Ewald is used with α = alphal
in Å−1 and the cutoff in k–space kcut = rkcut in Å−1. The output will show what degree of convergence
has been reached showing the numerical value of erfc (rcutα) /rcut and of exp

(

−k2cut/2α
)

/kcut. To
chose instead PME the argument pme alphal ftt1 ftt2 ftt3 order must be chosen. Here, alphal has
the same meaning as before, while order is the order of the spline and fft1 fft2 fft3 define the three
dimensional grid in direct space providing the number of bins along the a, b, c crystal axis, i.e. the
dimensions of the 3–D FFT used in the PME method. For best efficiency fft1 , fft2, and fft3 must
be multiples of 2, 3 or 5. Of course, if the argument is off no Ewald summation is used for the
electrostatic interactions. When using PME, Newton third law is not obeyed exactly but to the
numerical accuracy of the interpolation. This leads to a small momentum of the MD cell which can
be removed by specifying the argument REMOVE MOMENTUM

EXAMPLES

1 EWALD on 0.4 2.0

Standard Ewald is used with parameters α = 0.4 Å−1 and kcut = 2.0 Å−1.

2 EWALD pme 0.4 45 32 45 6

EWALD REMOVE MOMENTUM

The electrostatic interaction is handled by PME with α = 0.4 Å−1, the order of the spline is 6
and the and the number of bins for defining the grid are 45,32,45 along the a, b, c crystal axis,
respectively. Typically, acceptable relative accuracy (10−4-10−5) on electrostatic energies and
forces is obtained with a grid spacing of about 1-1.2 Å along each dimension. In this example
the second invocation of the EWALD command is used in order to remove the linear momentum
of the MD cell.

GROUP CUTOFF

NAME
GROUP CUTOFF

WARNINGS
Obsolete - Unsupported

Input to ORAC : &POTENTIAL 109

H-MASS

NAME
H-MASS – Change the hydrogen mass

SYNOPSIS
H-MASS hdmass

DESCRIPTION
The command H-MASS changes the mass of all solute hydrogens to hdmass given in a.m.u. This allows
to use larger time steps during equilibration.

EXAMPLES
H-MASS 10.0

I-TORSION

NAME
I-TORSION – Set the type of improper torsion potential

SYNOPSIS
I-TORSION itor type

DESCRIPTION
This command defines which improper torsion potential must be used. If the argument string itor type
is HARMONIC a harmonic CHARMM–like potential functions is chosen. Conversely, if the argument is
COSINE a sinusoidal AMBER–like potential function is chosen.

EXAMPLES
I-TORSION HARMONIC

JORGENSEN

NAME
JORGENSEN – Allow Jorgensen-type interaction potentials.

SYNOPSIS
JORGENSEN

DESCRIPTION
If the system is composed of solute molecules of the same type it is sometime useful to use different
interaction parameters for intermolecular and intramolecular interactions. The command JORGENSEN

is designed to handle this situation. Sec. 10.3 describes how the inter and intra–molecular Lennard-
Jones parameters are read by ORAC .

WARNINGS
Experimental - Unsupported

Input to ORAC : &POTENTIAL 110

KEEP BONDS

NAME
KEEP BONDS – Constraints bond lengths to starting values.

SYNOPSIS
KEEP BONDS

DESCRIPTION
This command should be specified when bond constraints are imposed to the system (see command
STRETCHING and CONSTRAINT in this environment). If specified, all bonds to be constrained are
constrained to the initial length found in the starting PDB file

DEFAULTS
KEEP BONDS is .FALSE.

LJ-FUDGE

NAME
LJ-FUDGE – Set the fudge factor of the Lennard–Jones interaction

SYNOPSIS
LJ-FUDGE lj–fudge

DESCRIPTION
The argument to this command, lj–fudge, is the multiplicative factor of the 1-4 Lennard-Jones inter-
action.

EXAMPLES
LJ-FUDGE 0.5

DEFAULTS
LJ-FUDGE 1.0

LINKED CELL

NAME
LINKED CELL - Compute linked cell neighbor lists

SYNOPSIS
LINKED CELL ncx ncy ncz [nupdte]

DESCRIPTION
The LINKED CELL command switches to linked cell neighbor lists in place of conventional Verlet lists.
The command can be used also for non orthogonal MD boxes. The integers ncx ncy ncz define the
three dimensional grid by providing the number of bins along the a, b, c crystal axis, respectively.
The optimum fineness of the cell grid depends on the density of the sample. For normal density a grid
spacing of 3.0-3.5 Å along each axis is recommended. The Verlet neighbor list computation depends
on N2 where N is the number of particle in the system. The linked cell neighbor algorithm [159]
scales linearly with N but it has a large prefactor. The break even point for the two methods is at
about 7000 atoms for scalar machines. The frequency of updating of the index cell list is controlled
by the argument nupdate and by the command UPDATE in this environment. If fupdate is the updating
time specified in the command UPDATE the updating time for the linked list is fupdate × nupdate

EXAMPLES

Input to ORAC : &POTENTIAL 111

&SETUP

...

CELL 54.0 72.0 41.0 90.0 102.0 90.0

...

&END

&POTENTIAL

...

LINKED_CELL 15 20 12 1

...

&END

Here a grid spacing of about 3.5 Å along each crystal axis is selected.

DEFAULTS
nupdate = 1

QQ-FUDGE

NAME
QQ-FUDGE – Set the fudge factor of the electrostatic interaction

SYNOPSIS
QQ-FUDGE qq–fudge

DESCRIPTION
The argument to this command, qq–fudge, is the multiplicative factor of the 1-4 electrostatic inter-
action.

EXAMPLES
QQ-FUDGE 0.5

DEFAULTS
QQ-FUDGE 1.0

SELECT DIHEDRAL

NAME
SELECT DIHEDRAL – Include only selected torsion angles in the potential.

SYNOPSIS
SELECT DIHEDRAL

DESCRIPTION
In old force field only selected torsion angles were included. This command handles this situation.

DEFAULTS
The action taken by the command AUTO DIHEDRAL is the default.

WARNINGS
Diagnostic - Unsupported

Input to ORAC : &POTENTIAL 112

SHIFT-POT

NAME

SHIFT-POT – This command provides an alternative for the soft-core regularization when rij → 0.
The Coulomb (direct lattice only) and LJ potentials are right-shifted by a λ-dependent positive s-
term, i.e 1/rij → 1/(rij+λijs) or (σij/rij)

n → (σij/(rij+λijsσij))
n, so that these potential functions

have finite derivatives when rij → 0 and λij → 1.

SYNOPSIS
SHIFT-POT sel sLJ

DESCRIPTION
sel and rLJ = sLJσij (in Å) are the shift distances for the Coulomb and LJ potential.

DEFAULTS
sel = 4.0 sLJ = 0.35

WARNINGS
This command is not supported in the vector (KNL) force alchemy routine.

SOFT-CORE

NAME
SOFT-CORE – Specification of the soft-core parameters for alchemical transformations.

SYNOPSIS
SOFT-CORE γel γLJ

DESCRIPTION
γel and γLJ are the real number specified in Eq. 9.1.

DEFAULTS
γel = γLJ = 0.5

WARNINGS
γel = 0 for the vector (KNL) force alchemy routine.

STEER PATH

NAME
STEER PATH – Steer along an arbitrary curvilinear coordinate or perform alchemical transformation.

SYNOPSIS
STEER PATH OPEN filename

DESCRIPTION
This command allows to do a MD simulation by steering the system along an arbitrary curvilinear
path with arbitrary time protocol in a n-dimensional coordinate space (see Sec. 8.3). This curvilinear
coordinate and time protocol can be given in terms of time dependent added stretching, bending and
torsions external potentials to be specified in the file filename. The format of this file is shown in
Table 8.3. Refer to Sec. 8.3 for more details.

or

STEER PATH ALCHEMY filename

Input to ORAC : &POTENTIAL 113

DESCRIPTION
This command allows alchemical transformations using a time protocol specified in the file filename.
See DEFINE ALCHEMICAL ATOM command for details on alchemical transformations.

STRETCHING

NAME
STRETCHING – Include stretching potentials

SYNOPSIS
STRETCHING [HEAVY]

DESCRIPTION
This command assigns a harmonic stretching potential (see Sec. 10.3.1) between covalently bonded
atoms in the solute. Without argument, stretching potentials are assigned to all possible covalently
bonded pairs. If the argument HEAVY is provided, bonds involving hydrogens are maintained rigid
and only stretching potentials for bonded pairs involving non–hydrogen atoms are assigned.

DEFAULT
Constraints on all bonds is the default.

UPDATE

NAME
UPDATE – Assign parameters for the computation of the Verlet neighbor list

SYNOPSIS
UPDATE fupdte rspcut

DESCRIPTION
ORAC computes Verlet neighbor lists the atomic groups of both the solvent and solute. There exist
three different neighbor lists: a solvent–solvent, a solute–solute and a solvent–solute list. During
the run, the calculation is carried out with a frequency equal to fupdte fs. All the group–group
interactions within a radial cutoff of rcut + rspcut are included in the neighbor lists. The dimensions
of the three lists are printed at run time. In the ORAC output nnlww, nnlpp and nnlpw refers to
the solvent–solvent, solute–solute and solute–solvent neighbor list. The current version of ORAC can
also use linked cell in place of the conventional Verlet neighbor list (see command LINKED CELL).

EXAMPLES
UPDATE 65.0 1.4

Update the neighbor lists every 65.0 fs and use a cutoff of rcut + 1.4 Å.

DEFAULTS
UPDATE 100.0 1.0

WARNINGS
The neighbor list cutoff must not be chosen larger than half of the simulation box size. The calculation
of the neighbor list is performed by default. Only for solvent–only simulations, if the radial cutoff is
equal to half of the box size, the force calculation is carried out without the use of neighbor list. When
using r–RESPA the value of rspcut is ignored in the UPDATE directive and is taken as an argument of
the last step nonbond command in the MTS RESPA structured command.

Input to ORAC : &POTENTIAL 114

VERLET LIST

NAME
VERLET LIST - Compute Verlet neighbor list

SYNOPSIS
VERLET LIST The conventional Verlet List computation is the default.

WARNINGS
Obsolete - Unsupported

Input to ORAC : &PROPERTIES 115

10.2.7 &PROPERTIES

The &PROPERTIES directive is used to compute statistical properties on the fly or a posteriori once the trajec-
tory file has been produced (see command DUMP (&INOUT) and &ANALYSIS environment.) ORAC can com-
pute radial distribution functions, structure factors (GOFR), velocity autocorrelation functions (TIME CORRELATIONS).
The &PROPERTIES environment is still in the developing stage in the current version of ORAC . Thus, none
of the &PROPERTIES features is officially supported.. Some properties can no longer be computed
on the fly in the current version and have to be computed using the &ANALYSIS environment once the
trajectory file has been produced.

DEF FRAGMENT DIST FRAGMENT FORCE FIELD GOFR, HBONDS PRINT DIPOLE, STRUCTURES,

TIME CORRELATIONS, VORONOI, WRITE GYR

DEF FRAGMENT

NAME
DEF FRAGMENT – Define a fragment of a solute.

SYNOPSIS
DEF FRAGMENT begin end

DESCRIPTION
This command is used in conjunction with the command PLOT FRAGMENT in &INOUT, or in conjunction
with the command DIST FRAGMENT in this environment. The arguments indicate the ordinal numbers
of the first begin and the last end atom of a solute fragment. This numbers may be deduced by
inspection of the PDB file including the hydrogen atoms (see command ASCII for generating a PDB
file with hydrogen atoms). The command DEF FRAGMENT can appear more than one time in the
environment. The atoms of different solute molecules defined with this command can overlap.

EXAMPLES
DEF FRAGMENT 1 80

DEF FRAGMENT 81 90

DEF FRAGMENT 1001 1256

DIST FRAGMENT

NAME
DIST FRAGMENT – Print out distances between solute fragments.

SYNOPSIS
DIST FRAGMENT ffragm OPEN filename

DESCRIPTION
Write the distances between the centroid of the fragments defined in the command DEF FRAGMENT

to the file filename. This command works only while retrieving the trajectory file by specifying the
&ANALYSIS environment.

EXAMPLES
DIST FRAGMENT 10.0 OPEN file dist.frg

WARNINGS
This command has no action while running a simulation.

Input to ORAC : &PROPERTIES 116

FORCE FIELD

NAME
FORCE FIELD – Print force field parameters

SYNOPSIS
FORCE FIELD

WARNINGS
Work only in the production/simulation stage. It has no effect when reading the trajectory file.

GOFR

NAME
GOFR – Compute solvent and/or solute pair correlation function g(r) and structure factors S(k).

SYNOPSIS

GOFR

...

...

END

DESCRIPTION
The command GOFR opens an environment which includes a series of subcommands to define the
parameters used in the calculation of the radial distribution functions.

average favg
Average the g (r)’s over length favg given in units of femtoseconds.

compute fcomp
Compute the g (r)’s with a frequency of fcomp femtoseconds.

cutoff fcut
Cut the calculation of the g (r)’s at distance equal to fcut Å.

delta delrg
Set the bin size of the g (r)’s to delrg Å.

intra

Include intramolecular contacts in solvent-solvent g(r)’s.

print fconf OPEN filename
g (r)’s are printed to the file filename every fconf fs.

use neighbor

Use the neighbor list to compute the g (r)’s.

Radial distribution function can be computed on the fly.

EXAMPLES

GOFR

print 1000.0 OPEN test.gofr

use_neighbor

average 1000.0

compute 10.0

cutoff 12.0

delta 0.02

END

Input to ORAC : &PROPERTIES 117

WARNINGS
When the the subcommand use neighbor is used cutoff cannot exceed the neighbor lists cutoffs.

HBONDS

NAME
HBONDS – Compute solute H-bonds structural properties

SYNOPSIS

HBONDS

...

...

END

DESCRIPTION
The command HBONDS opens an environment which includes a series of subcommands which allow to
compute hydrogen bond related properties. The hydrogen bond donor-acceptor pairs must be defined
in the topological file. (see section 10.3). If these definition where not included when generating the
trajectory file, and if READ TPGPRM is specified in the &PARAMETERS environment, HBONDS produces
no output. These definitions may be provided at analysis time by the READ TPG (&PARAMETERS)
directive. In the following we indicate with the letters A and D the donor and acceptor pair.

angular cutoff cutoff1 [cutoff2]
defines two angular cutoffs (in degrees) for A...H −D and A−D...H , respectively. If only one
argument is specified, the two cutoff are equal.

histogram fbin
define the bin size (in Å) for hydrogen bonds histograms.

print nprint OPEN filename
print hydrogen bond output to file filename every nprint configurations. The output format
depends on READ PDB (&SETUP) directive. If this directive is specified the output contains
details concerning atomic types, hydrogen bond distances and angles.

print histo nprint OPEN filename
print hydrogen histogram to file filename every nprint configurations

radial cutoff cutoff
define the radial cutoff (in Å) for the hydrogen bond.

residue

printout hydrogen bonds per residues.

total

printout the total number of hydrogen bonds (the default)

use neighbor nconf rcut
compute neighbor list for hydrogen bonds. nconf defines how frequently the neighbor list must
be computed; rcut defines the radius of the neighbor list sphere.

EXAMPLES

HBONDS

total

residues

radial_cutoff 2.5

angular_cutoff 200.0 200.0

print 10 OPEN test.hbnd

histogram 0.1

Input to ORAC : &PROPERTIES 118

use_neighbors 5 5.0

print_histo 2 OPEN test.hst

END

WARNINGS
residue and total are ineffective when READ PDB is also specified. Experimental - Unsupported

PRINT DIPOLE

NAME
PRINT DIPOLE – Print out dipole.

SYNOPSIS
PRINT DIPOLE fdipole OPEN filename

DESCRIPTION
Print out the components of the total instantaneous dipole M (in debye Å) of the basic cell each
fdipole fs and the running average of the dielectric constant (relative permittivity).

EXAMPLES
PRINT DIPOLE 10.5 OPEN dipole.out The file dipole.out looks like the following:

....

399115.500 0.50455E+02 -0.29885E+02 0.46023E+01 11.330

399126.000 0.48858E+02 -0.40479E+02 0.80527E+01 12.520

399136.500 0.52146E+02 -0.35302E+02 0.70597E+01 13.023

399147.000 0.57283E+02 -0.32666E+02 0.52314E+01 13.372

399157.500 0.62705E+02 -0.36044E+02 -0.76743E+01 13.913

....

In the first column, the current simulation time is reported. Column 2-4 contain the instantaneous
values of the x, y, z component of the cell dipole (in Debye). In column 5 the running average of the
dielectric constant is reported. The dielectric constant is computed under the assumption of thin-foil
boundary conditions[160, 33] (i.e. no surface dipole term at the sphere boundary) using the formula
ǫ = 1 + 4π(< M2 > − < M >2)/(3V RT)[160].

WARNINGS
Diagnostic - Unsupported

STRUCTURES

NAME
STRUCTURES – Compute the root mean square deviations from a given solute reference structure

SYNOPSIS

STRUCTURES

...

...

END

DESCRIPTION
The command STRUCTURES opens an environment which includes a series of subcommands which
allow to compute average and instantaneous root mean square displacements (rms) of the solute for
various atomic type (α-carbon, heavy atoms, backbone atoms etc.). The reference structure for the
solute is entered with the command TEMPLATE(&SETUP)

Input to ORAC : &PROPERTIES 119

averaged ca

compute average rms of α-carbons

averaged heavy

compute average rms of non hydrogen atoms

inst xmrms type 1 type 2 ...
specifies which instantaneous rms’s have to computed. type n can be any combination of the
four keywords ca heavy backbone allatoms. The keyword all stands for all the the preceding
keywords simultaneously. The inst xrms keyword is mandatory when print inst xmrs is
specified.

print type nprint OPEN filename
print rms’s calculation as specified by type to file filename every nprint configurations (see also
command DUMP(&INOUT)) The keyword type can be any of the following:

averaged - the full protein (solute) coordinates in pdb format are printed to the file filename
with a constant orientation so that atomic rms’s are minimized. Feeding directly the file to
rasmol gives an pictorial view of the atomic displacements

avg xrms - The time running averages of the rms’s are printed, averaged over alpha-carbons,
backbone atoms, and all heavy atoms.

inst xrms - The instantaneous values of the rms’s are printed averaged over alpha-carbons,
backbone atoms, and all heavy atoms. If this subcommand is specified, along with inst xmrms

subcommand orac also produces the file filename atm which contains the final values of the
atomic rms’s for the atom types (alpha carbon, backbone atoms etc.) specified in the
command inst xrms.

EXAMPLES

STRUCTURES

print averaged 2 OPEN test.str

print avg_xrms 3 OPEN test.arms

print inst_xrms 3 OPEN test.irms

inst_xrms ca backbone

averaged ca

print rms 2 OPEN test.rms

END

WARNINGS
STRUCTURES commands works only in conjunction with the &ANALYSIS environment. Experimental -
Unsupported

TIME CORRELATIONS

NAME
TIME CORRELATIONS – Compute velocity autocorrelation functions and root mean displacements.

SYNOPSIS

TIME_CORRELATIONS

...

...

END

DESCRIPTION
The command TIME CORRELATIONS opens an environment which includes a series of subcommands
to define the parameters used in the calculation.

Input to ORAC : &PROPERTIES 120

diffusion OPEN filename
compute the mean square displacements |r(t)− r(0)|2

divide step nspline
provide a number equal to nspline of interpolated points between data points.

vacf OPEN filename
Compute velocity autocorrelation functions and print out results to file filename

EXAMPLES

TIME_CORRELATIONS

vacf OPEN vacf.test2

divide_step 2

diffusion OPEN diff.test2

END

WARNINGS
When the the subcommand use neighbor is used cutoff cannot exceed the neighbor lists cutoffs.
Experimental - Unsupported

VORONOI

NAME
VORONOI – Compute the Voronoi polihedra of atoms, residues and molecules

SYNOPSIS

VORONOI

...

...

END

DESCRIPTION
The command VORONOI opens an environment which includes a series of subcommands which allow
to compute average and instantaneous properties related to the Voronoi polihedra of the solute and
of the solvent.

compute accessibility

Compute the area of the Voronoi polihedron for all residues of the solute (computed as the
sum of the voronoi volumes of the individual atoms) and evaluate for each residue the fraction
of the surface that is accessible to the solvent (solute and solvent as defined in the command
JOIN(&PARAMETERS))

compute contact solute int1 int2
Compute the contact surface among selected solute residues with residue numer int1 and int2
as in the the PDB file.

compute neighbors

Compute the Voronoi coordination number relative to the whole solute-solute, solvent-solvent
and solute-solvent contacts.

compute volume

Compute the Voronoi volumes of all residues in the solute.

cutoff value
values the cutoff (Å) for

heavy atoms

Use only non hydrogen atoms for evaluating Voronoi polihedra

Input to ORAC : &PROPERTIES 121

print nprint OPEN filename
Print all output as to file filename every nprint configurations

EXAMPLES

VORONOI

print 5 OPEN 6.vor

cutoff 8.0

heavy_atoms

compute contact_solute 1 2

compute contact_solute 5 6

compute volume

compute neighbors

compute accessibility

END

In this example we compute the voronoi volumes, areas and accessibility and neighbors for the residues
of a proteins every 5 configurations. Also the contact surfaces between residues 1 and 2 and residue
5 and 6 are evaluated. All output are printed to the file 6.vor.

WARNINGS
VORONOI commands works only in conjunction with the &ANALYSIS environment. Experimental -
Unsupported

WRITE GYR

NAME
WRITE GYR – Print gyration radius.

SYNOPSIS
WRITE GYR ngyr OPEN filename

EXAMPLES
WRITE GYR 10.0 OPEN test.gyr

WARNINGS
Work only at single time step. Experimental - Unsupported

Input to ORAC : &REM 122

10.2.8 &REM

Define run time parameters concerning Replica Exchange Simulation. Work only with the parallel version
(see Chapter 11), i.e. this namelist is not recognized when the serial program is compiled. The following
commands are allowed:

BATTERIES, PRINT, PRINT DIAGNOSTIC, PRINT ENERGY, SEGMENT, SETUP, STEP

BATTERIES

NAME
BATTERIES – produces simulation multiplets

SYNOPSIS
BATTERIES nbatt

DESCRIPTION
Produces nbatt independent simulations of the same generalized ensemble system. This option can
be used to augment the statistics of a REM simulation. In case of multiple REM simulations, the
option BATTERIES expand the total number of MPI instances to nbatt × nreplicas. The number
of replicas in each independent simulation processes is given by the integer NPROC/nbatt where
NPROC is specified in the mpirun command.

EXAMPLES

– Example 1.

&REM

..

SETUP 1.0 0.3 0.3 1

BATTERIES 32

...

&END

When this input is launched on, e.g. exactly 320 MPI instances, 32 independent H-REM simu-
lations are produced, each scaling torsional and non bonded potential from 1.0 (target state) to
0.3 (hottest state).

– Example 2.

&REM

..

SETUP 1.0 1.0 1.0 1

BATTERIES 32

...

&END

When this input is launched on exactly 32 MPI instances, 32 independent standard simulations
are produced.

DEFAULTS
nbatt=1

Input to ORAC : &REM 123

PRINT

NAME
PRINT – print out info on REM.

SYNOPSIS
PRINT iprint

DESCRIPTION
Controls intermediate printing of the acceptance ratio between adjacent replicas.

EXAMPLES
PRINT 1000

Print info on the current acceptance ratios every 1000 fs.

DEFAULTS
No info is printed.

PRINT DIAGNOSTIC

NAME
PRINT DIAGNOSTIC – print out info on REM.

SYNOPSIS
PRINT DIAGNOSTIC fprint

DESCRIPTION
Controls the frequency of intermediate printings for diagnostic data in the file REM DIAGNOSTIC.

EXAMPLES
PRINT DIAGNOSTIC 1000.0

Print info on the current acceptance ratios every 1000.0 fs.

DEFAULTS
Printed at every outermost time step.

PRINT ENERGY

NAME
PRINT ENERGY – print out (unscaled) energies terms

SYNOPSIS
PRINT ENERGY fplot OPEN filename

DESCRIPTION
Controls intermediate printing of the unscaled energy terms: (1) stretching+bending+improper tor-
sions, (2) proper torsions+1-4, (3) real space electrostatic+Lennard-Jones. The energy terms are
appended to the history file filename, along with the time step and the replica index. The dumping
frequency, in fs, is fplot.

EXAMPLES
PRINT 60.0 OPEN test.ene

Print energies to the file file test.ene every 60 fs.

DEFAULTS
No info is printed.

Input to ORAC : &REM 124

SEGMENT

NAME
SEGMENT – Define the “solute” in solute tempering simulations.

SYNOPSIS
SEGMENT

....
END

DESCRIPTION
This structured command is used to define the “solute” in the a solute/tempering REM simulation
and to assign the scaling factors for the Hamiltonian REM simulation (see Sec. 5.2) to the intrasolute,
solute-solvent and solvent-solvent interactions. The following sub-commands may be specified within
SEGMENT:

define, kind

• define n1 n2
The define command is used to crop a piece of solute for Hamiltonian scaling in a REMD
simulation. One can use up to a maximum of 10 define commands, cropping 10 disconnected
(non overlapping) part of the solute. n1 and n2 are the atom indices of the selected solute parts,
The numeric order of the atoms is that specified in the topology file (see Sec. 10.3.

• kind inter type
Once the “solute” has been defined using the define sub-command, the sub-command kind

is used to scale the solute-solute, solute-solvent interactions. Possible choices for the string
inter type are intra and inter. intra means that the non-bonded energy scaling (see SETUP

command) is applied to the intrasolute non-bonded interactions only, i.e. solute-solvent in-
teractions are not scaled where by “solvent” we mean the actual solvent and the solute atoms
which were not selected using the define sub-command. inter scales only solute-non solute
(i.e. solvent) non bonded interactions. Intrasolute interactions are NOT scaled if inter is spec-
ified. If the sub-command kind is not specified, the ORAC assumes that both solute-solvent and
solute-solute interactions are scaled.

EXAMPLES
SEGMENT

define 1 10

define 1300 1325

kind inter

END

SETUP

NAME
SETUP – Define the scaling in a REM simulation.

SYNOPSIS
SETUP scale1 [scale2 scale3] irest

DESCRIPTION
The SETUP command is used to define the lowest scaling factor(s) (i.e the highest temperature) of the
last replica. The number of replicas in the REMD simulations are equal to the number of processors
passed to the MPI routines (nprocs). The spacing between the replicas can be defined in the REM.set
user-file by setting the irest integer equal to 2. If only the scale1 real parameter is specified, an
equal scaling is applied to all parts of the potential. If the three parameters scale1, scale2, scale3
are specified, then scale1 refers to the bending, stretching and improper torsional potential, scale2

Input to ORAC : &REM 125

to the (proper) torsional potential and to the 14 non-bonded interactions and finally scale3 refers
to the non bonded potential.NB: when the Ewald summation is used together with the command
SEGMENT(&REM), scale3 scales only the direct (short-ranged) part of the electrostatic interactions and
the (long-ranged) reciprocal part has a scaling factor of 1.0 (i.e. these interaction are not scaled).
If irest=0, the run is restarted from a previous one. This implies that the directories PARXXXX are
present and are equal in number to nprocs as specified in the mpiexec/mpirun command. The default
prefix of the REM directories can be changed from PAR to anything by specifying in the preamble of
the main input file the shebang directive

#!& MYPREFIX

If irest 6= 0 then the run refers to a cold start from scratch and

– if irest= 1, then the scaling factors of the intermediate replicas are derived according to a

geometric progression, namely scalei(m) = scale
m/(nprocs−1)
i , where scalei(m) is the scaling

factor for the potential i of the replica m with 0 ≤ m ≤ nprocs− 1. For example, if scalei = 0.6
and nprocs=4, then replica m = 0 has scalei(0) = 1, replica m = 1 has scalei(1) = 0.843433,
replica m = 2 has scalei(2) = 0.711379 and the replica m = 3 has scalei(3) = scalei = 0.6.

– if irest= 2, the scaling factors are read from an auxiliary file called “REM.set” that must
be present in the directory from which the program is launched using the mpiexec/mpirun

command. This ASCII file has as many lines as parallel processes and on each line the three (or
one) scale factors must be specified.

– if irest= 3, then each replica read from a user-defined pdb file that must reside in the PARxxx
dir. This is useful when restarting a REM simulation with the SAVE ALL FILES directive. To
restart a REM with the SAVE ALL FILES directive on, the user must hence do the following: 1)
set irest to 3 in the main rem input; 2) change the filename specification in the SAVE ALL FILES

directive (namelist &INOUT) ; this avoids overwriting the saved restart files ; 3) copy the last
configuration in the PARxxx pdb files to a common user-name file in the same directories (e.g.
RESTART.pdb) and instructs the program to read from that PDB in the namelist &SETUP using
the directive READ PDBb RESTART.pdb with no ../ specification ;4) optionally rename in the
main input the output files to be produced during the rem simulation.

EXAMPLES
SETUP 1.0 1.0 0.6 1

Scales only the non bonded potential (direct part) using a geometric progression.

DEFAULTS
SETUP 1.0 1.0 1.0 1

STEP

NAME
STEP – exchange time for REM

SYNOPSIS
STEP rtime

DESCRIPTION
Define the time (in fs) for attempting an exchange between adjacent replicas.

EXAMPLES
STEP 5.0

Attempt replica exchanges every 5 fs.

DEFAULTS
STEP 0

Input to ORAC : &REM 126

WARNINGS
If STEP is not set, rtime is set to the time step of the m-th inter-molecular shell,

Input to ORAC : &RUN 127

10.2.9 &RUN

Define run time parameters which concern output printing and run averages. The following commands are
allowed:

CONTROL, DEBUG, OPTION, MAXRUN, PRINT, PROPERTY, REJECT, SCALE MASS, STEER, TIME

CONTROL

NAME
CONTROL – Indicate initial conditions

SYNOPSIS
CONTROL icontrol

DESCRIPTION
ORAC can run simulations or minimization reading the system initial momenta and/or coordinates
from different sources. If the integer argument icontrol is zero, the simulation run must commence
from coordinates either stored entirely in a PDB file or generated by ORAC itself from some initial
configuration (see CELL or SPACE GROUP in &SETUP). CONTROL 0 implies that all system momenta are
initialized from the Boltzmann distribution at the wanted temperature. When CONTROL 2, the run
is started from the restart file defined by the command SAVE or RESTART in &INOUT. With CONTROL

2 all system averages are zeroed. The same action is taken if CONTROL 1, but the averages are not

initialized to zero.

EXAMPLES
CONTROL 2

Run a simulation from a restart file and set all averages to zero.

DEFAULTS
CONTROL 0

WARNINGS
When restarting a run with a different integration scheme form the one used in the restart file,
CONTROL should be set to 2. If not, unpredictable behavior may occur.

DEBUG

NAME
DEBUG – Print debug information

SYNOPSIS
DEBUG all

DEBUG debug type

DESCRIPTION
Print various arrays to the standard output for debugging. Information regarding the solute topology
and force field is written only if the solute topology and parameter list is actually computed and not

read from a binary file (i.e. READ TPGPRM BIN in &PARAMETERS must be inactive). The debug type
string can be

residue sequence

The residue sequence is printed.

Input to ORAC : &RUN 128

bond table

Details about bonds and corresponding stretching parameters are printed.

bend table

Details about bending and corresponding parameters are printed.

ptors table

Details about proper torsions and corresponding parameters are printed.

pitors table

Details about improper torsions and corresponding parameters are printed.

EXAMPLES
DEBUG all

print out all tables.

DEBUG bond table

DEBUG bend table

DEBUG residue sequence

print out the bond and bending table and the residue sequence.

MAXRUN

NAME
MAXRUN – Provide the maximum simulation length (in fs)

SYNOPSIS
MAXRUN fmaxrun

DESCRIPTION
This command controls the total length of the direct access file. The number of records initialized
by the DUMP(&INOUT) command is given by nrec = fmaxrun*natoms/atom rec where natoms and
atom rec are the total number of atoms in the system and the atoms per record, respectively. fmaxrun
cannot be less than ftime (see command TIME in this environment).

EXAMPLES
MAXRUN 500000.0

PRINT

NAME
PRINT – Print instantaneous results

SYNOPSIS
PRINT fprint

DESCRIPTION
ORAC writes the instantaneous energies of the system to standard output. The real argument fprint
indicates the chosen printing frequency in fs.

EXAMPLES
PRINT 5.0

Input to ORAC : &RUN 129

PROPERTY

NAME
PROPERTY – Print averages with a given frequency

SYNOPSIS
PROPERTY fprop

DESCRIPTION
ORAC writes to the standard output the running averages of the current run. The real argument
fprop is the frequency of printing in femtoseconds.

EXAMPLES
PROPERTY 500.0

Write averages every 500.0 fs.

WARNINGS

– An error condition will occur if this command is not included in the input to ORAC or if the
argument, fprop is zero.

– The command is not active only in the rejection phase (see command REJECT).

REJECT

NAME
REJECT – Provide the length of the rejection phase

SYNOPSIS
REJECT freject

DESCRIPTION
During the equilibration or rejection phase only instantaneous results are printed, while averages are
discarded. The real argument freject indicates the time lag, in femtoseconds, of the rejection phase.

EXAMPLES
REJECT 1000.0

Does not accumulate averages during the initial 1000.0 fs of the run.

WARNINGS
This command is inactive during a minimization run (see command MDRUN in &SIMULATION).

SCALE MASS

NAME
SCALE MASS – Provide the length of the rejection phase

SYNOPSIS
SCALE MASS i1 [i2] mass

DESCRIPTION
This command allows to change the mass of selected atoms. i1 is the atom index (according to the
ordering in specified in the topology files and JOIN directives in the namelist &PARAMETERS). mass is
the new assigned value of the mass to atom i1. If the integer i2 is also specified, atoms with indexes
from i1 to i2 are assigned the mass mass.

Input to ORAC : &RUN 130

EXAMPLES
SCALE MASS 1 2 1.0E40

Masses of atom with index 1 and 2 are set to 1.0E40 uma, to fix them during the simulation. This
command can be useful in fast switching alchemical calculations of ligand-protein systems to avoid
imposing a harmonic restraint to keep the ligand in the binding site. It can be shown that mass
instantaneous isokinetic scaling and restoring in a nonequilibrium processes yields a null contribution
to the total work.[?]

WARNINGS
This command is inactive during a minimization run (see command MDRUN in &SIMULATION).

STEER

NAME
STEER – Provide the starting and final time (in fs) for a steered molecular dynamics. The time depen-
dent harmonic potential is defined in the namelist &POTENTIAL using the command ADD STR BONDS,
ADD STR BENDS, ADD STR TORS.

SYNOPSIS
STEER tiniz tfinal
STEER temperature temp0 tempt tiniz tfinal

DESCRIPTION
Steer the system with the time dependent mechanical potential defined in the namelist &POTENTIAL,
starting the SMD at time tiniz and ending at time tfinal. This command can also be used to gradually
change the temperature in conjunction with the command PLOT STEER TEMPERATURE(&INOUT)where
the adimensional thermal work done on the thermostat is printed at regular time intervals (see the
PLOT (&INOUT) command). Steered molecular dynamics can be automatically restarted. In order
to do this, one sets once for all the steering time (tfinal) to the desired value, updating, at each
restart, only the simulation time given by the TIME(&RUN) directive.

EXAMPLES

&RUN

...

STEER 1000.0 10000.0

..

&END

&INOUT

..

PLOT STEER_ANALYTIC 100.0 OPEN WRK.out

..

&END

Start to apply the time dependent potential (see Eq. 8.13) at 1 ps and switch it off at 11 ps. Print
out the accumulated work every 100 fs to the file WRK.out. The accumulated work is calculated
according to Eq. 8.16.

&RUN

...

STEER temperature 300. 1500. 1000.0 11000.0

..

&END

&INOUT

Input to ORAC : &RUN 131

..

PLOT STEER_TEMPERATURE 100.0 OPEN WRKTEMP.out

..

&END

rise the temperature form 300 to 1500 K starting at 1 ps and ending at 11 ps, with the constant
speed of 120 K /ps. The thermal work is printed every 100 fs to the file WRKTEMP.out.

&RUN

CONTROL 1

STEER 0.0 18000.0

TIME 10000.0

..

&END

&INOUT

..

PLOT STEER_ANALYTIC 100.0 OPEN WRK.out

..

&END

..

&INOUT

RESTART

read file.rst

write 30.0 OPEN new.rst

END

&END

In this example, the simulation starts from the restart file file.rst and goes from the time found in
that file to 10000.0 fs. The total steering time is 18000.0 fs. In the next restarted run the configuration
of the system at t = 10000 fs is found in the file new.rst. The next restarted simulation could be
thus of the kind:

&RUN

CONTROL 1

STEER 0.0 18000.0

TIME 18000.0

..

&END

&INOUT

..

PLOT STEER_ANALYTIC 100.0 OPEN WRK_10000_18000.out

..

&END

..

&INOUT

RESTART

read new.rst

END

&END

In this example, the steering is complete and in the output file WRK 10000 18000.out, the work is
calculated from t = 10000 fs to t = 18000 fs.

Input to ORAC : &RUN 132

TIME

NAME
TIME – Length of the simulation not including the rejection phase

SYNOPSIS
TIME ftime

DESCRIPTION
This command gives the length of the acquisition run which is to be carried out after the rejection
(equilibration) phase. The unit of its real argument ftime is femtoseconds. During the acquisition
run averages are accumulated.

EXAMPLES
TIME 100000.0

Input to ORAC : &SETUP 133

10.2.10 &SETUP

The environment &SETUP includes commands concerned with the simulation box setup. In this environment,
the simulation cell parameters, dimensions and symmetry can be initialized. Moreover, files containing the
system coordinates in appropriate format can be provided. The following commands are incorporated in
&SETUP:

CRYSTAL, READ PDB, RECONSTRUCT, REPLICATE, TEMPLATE

CHANGE CELL

NAME
CHANGE CELL – Recomputes the atomic coordinates according to input.

SYNOPSIS
CHANGE CELL

DESCRIPTION
This command has an effect only when the run is restarted (see commands RESTART(&INOUT)

and CONTROL(&RUN)). This command must be specified, in case one wishes to change the MD cell
parameters, with respect to those dumped in the available restart file, to those specifies in the CRYSTAL
directive in this environment. If CHANGE CELL is not specified and the run is restarted, the CRYSTAL

directive is ignored and the cell parameters are taken form the last configuration of the restart file.
If CONTROL 0 is entered in the environment &RUN, this command has no effect.

EXAMPLES
CHANGE CELL

CRYSTAL

NAME
CRYSTAL – Read the cell parameters defining the shape of the simulation box

SYNOPSIS
CRYSTAL a [b c [α β γ]]

DESCRIPTION
The arguments α, β and γ to this command are defined using the usual crystallographic conventions:
α is the angle between the b and c axis, β is the angle between a and c, and γ is the angle between
a and b.

EXAMPLES
CRYSTAL 12.3 14.5 12.3 90.0 95.0 90.0

CRYSTAL 15.0

DEFAULTS
α = β = γ = 90.0

Input to ORAC : &SETUP 134

READ PDB

NAME
READ PDB – Read input system coordinates from a PDB file

SYNOPSIS
READ PDB filename

DESCRIPTION
This command indicates the name of a file in the protein data bank format which contains the solute
and/or solvent coordinates. The name of this file, filename, must be provided. The coordinates of
the solvent molecules, if present, must follow those of the solute in the PDB file. The atom labels for
solute and/or solvent must correspond with those defined in the topology file (see description in Sec.
10.3). The order of the atoms, within a solute residue or a solvent molecule, specified in the PDB file
is unimportant (the “ORAC order” corresponds to that specified in the topology file). If the system
contains hydrogen atoms, the PDB file ought not to include the hydrogen atoms coordinates. If
hydrogen atoms are not present in the PDB file, but they are included in the topological specification
of residue or solvent, their coordinates are generated by ORAC according to geometry considerations.

EXAMPLES
READ PDB test.pdb

WARNINGS
This command has no action if CONTROL in &RUN is different from zero, i.e. if the system coordinates
are read from a restart file (see RESTART in &INOUT).

REPLICATE

NAME
REPLICATE – Replicate the unit cell generated by SPACE GROUP(&SOLUTE)

SYNOPSIS
REPLICATE icl icm icn

DESCRIPTION
The integer arguments icl, icm, icn indicate how many times along the three axis the unit cell must
be replicated. The cell parameters of the replicated structure are input to the command CRYSTAL.

EXAMPLES
REPLICATE 4 4 5

Replicate the unit cell 4, 4 and 5 times along the a, b and c crystal axis, respectively.

WARNINGS
This command has no action if CONTROL in &RUN is different from zero, i.e. if the system coordinates
are read from a restart file (see RESTART in &INOUT).

RESET CM

NAME
RESET CM – Reset to zero the position of the center of mass of the solute atoms.

SYNOPSIS
RESET CM

DESCRIPTION
This command is active only if the solute coordinates are read from a PDB file. Before the run starts
RESET CM set the center of mass of the solute to zero.

Input to ORAC : &SETUP 135

READ CO

NAME
READ CO – Read Crystal to Orthogonal (CO) matrix.

SYNOPSIS

READ_CO

ax bx cx

ax by cy

ax by cz

END

DESCRIPTION
This command is active only the simulation is restarted and overwrites the CO matrix retrieved from
the restart file.

SOLUTE

NAME
SOLUTE – assume solute

SYNOPSIS
SOLUTE [ON] SOLUTE [OFF]

DESCRIPTION
This command is active only if the solute coordinates are read from a PDB file. If ON is specified,
ORAC assumes that a solute is present and its coordinates are read in from the file PDB specified by
the directive READ PDB in this environment. When SOLUTE [ON] is specified, the namelist &SOLUTE
may be omitted. When SOLUTE OFF is specified, the namelist &SOLUTE must be omitted.

EXAMPLES

&SETUP

READ_PDB solute.pdb

SOLUTE ON

&END

A solute is present and the coordinates are read in from the file PDB. The “residue” sequence found in
the PDB must match that given in the JOIN SOLUTE (&PARAMETERS) directive. If the environment
&SOLUTE is entered, solute is assumed anyway, this command has no effect.

SOLVENT

NAME
SOLVENT – Reset to zero the position of the center of mass of the solvent atoms.

SYNOPSIS
SOLVENT [ON] SOLVENT [OFF]

DESCRIPTION
If ON is specified, ORAC assumes that a solvent is present and its coordinates are read in from the
file PDB specified by the directive READ PDB in this environment. This command is not mandatory
as, if the solvent is present the environment &SOLVENT (which has the same effect of SOLVENT [ON]

must be entered anyway in order to specify how to generate the solvent or the number of solvent
molecules in the PDB file. When SOLVENT OFF is specified, the namelist &SOLVENT must be omitted.

Input to ORAC : &SETUP 136

EXAMPLES

&SETUP

READ_PDB solvent.pdb

SOLVENT ON

&END

...

&SOLVENT

ADD_UNITS 432

&END

...

&PARAMETERS

...

JOIN SOLVENT

hoh

END

&END

...

A solvent (432 molecules) is present and the coordinates are read in from the file PDB. The “residue”
sequence for the solvent found in the PDB must match that given in the JOIN SOLVENT (&PARAMETERS)

directive. If a solute is also present and its coordinates are given in the PDB file specified by the
READ PDB command, then the coordinates of the solvent molecules must follow those of the solute in
the PDB file. An example is the following

&SETUP

READ_PDB solute+solvent.pdb

SOLVENT ON

SOLUTE ON

&END

...

&SOLVENT

ADD_UNITS 432

&END

...

&PARAMETERS

...

JOIN SOLVENT

hoh

END

JOIN SOLUTE

ala-h ala ala ala-o

END

&END

...

TEMPLATE

NAME
TEMPLATE – Define a template or reference structure

SYNOPSIS
TEMPLATE filename

Input to ORAC : &SETUP 137

DESCRIPTION
This command defines a template PDB file filename which contains reference solute coordinates
used during run time analysis for computing root mean square displacements (see command X RMS

in &PROPERTIES for instance).

EXAMPLES
TEMPLATE test template.pdb

Input to ORAC : &SGE 138

10.2.11 &SGE

Define run time parameters concerning Serial Generalized Ensemble simulations (see Chapter 6). It works
with both serial and parallel versions of the ORAC program (see Chapter 11). When reporting SGE sim-
ulations obtained by BAR-SGE method, please cite Ref. [56].

OUTPUT FILES:

SGE DF – In the serial version of ORAC, this file is written in the working directory. In the parallel
version it is written in the PAR0001 directory. The file reports the average dimensionless free energy
differences between ensembles (see Eq. 6.28) along with the errors calculated by Eq. 6.29 (see top
of the file). The file is updated in time intervals defined by the parameter Lb of the command STEP

(see below).

SGE ENERGY – In the serial version of ORAC, this file is written in the working directory. In
the parallel version it is written in the PARXXXX directories. The file reports the energies of the
system (see top of the file) including the ensemble index corresponding to the current replica (e.g.
the number n if the current ensemble of the replica is Λn). The file is updated in time intervals
defined by the parameter Lc of the command STEP (see below).

SGE HISTOG – In the serial version of ORAC, this file is written in the working directory. In the
parallel version it is written in the PAR0001 directory. The file reports a histogram related to the
(replica) population of the various ensembles. The file is updated in time intervals defined by the
parameter Lb of the command STEP (see below).

The following commands are allowed in the &SGE environment:

FIX FREE ENERGY, PRINT ACCEPTANCE RATIO, PRINT WHAM, SEGMENT, SETUP, STEP,

TRANSITION SCHEME, ZERO FREE ENERGY

FIX FREE ENERGY

NAME
FIX FREE ENERGY – Set up input for performing a SGE simulation with fixed weight factors.

SYNOPSIS
FIX FREE ENERGY OPEN PATH/filename

DESCRIPTION
The presence of this command in the input establishes that user-defined weight factors (the ∆gn→m =
gm − gn difference factors in Eq. 6.8) instead of self-updating free energy differences (the ∆fn→m =
fm−fn free energy difference in Eq. 6.22) must be used in the SGE simulation. Such factors are kept
constant during the simulation run. They are defined in the file named filename. The absolute path
(PATH) must be specified to localize filename. If one needs to use the relative path in a many-replica
SGE simulation (parallel run) then the working directories of the replicas must be considered the
PARXXXX ones. The weight factors ∆gn→m = gm− gn are dimensionless and, in filename, must be
reported one per line, from g2→1 to gnstates→nstates−1.

EXAMPLES
FIX FREE ENERGY OPEN ../weight factors.dat
A SGE simulation is performed with fixed weight factors read from file ../weight factors.dat.

DEFAULTS
The absence of the FIX FREE ENERGY command in the input implies the use of the BAR-SGE method
(see Section 6.3.2) to update the weight factors during the simulation.

Input to ORAC : &SGE 139

PRINT ACCEPTANCE RATIO

NAME
PRINT ACCEPTANCE RATIO – Print out the acceptance ratio of the SGE simulation.

SYNOPSIS
PRINT ACCEPTANCE RATIO iprint

DESCRIPTION
Print the acceptance ratio between adjacent ensembles of the SGE simulation every iprint fs. The
ratio is printed in the standard output.

EXAMPLES
PRINT ACCEPTANCE RATIO 1000.

Print the acceptance ratios every 1000 fs.

DEFAULTS
The acceptance ratio is printed with a frequency corresponding to that of free energy updating (see
Lb in command STEP).

PRINT WHAM

NAME
PRINT WHAM – Print out data needed for reweighting the configurations of all ensembles on a target
state.

SYNOPSIS
PRINT WHAM freq print

DESCRIPTION
Save data necessary for reweighting by “weighted histogram analysis method”[107] (WHAM) every
freq print fs in the file SGE WHAM. In the serial version of ORAC, this file is written in the working
directory. In the parallel version it is written in the PARXXXX directories. If a Hamiltonian SGE
simulation is performed, then the file reports the 3 unscaled potential energy terms (v(x) vector
of Eq. 6.15) that are subject to scaling (see command SETUP above). In a SGE simulation in the
space of collective coordinates, instead of v(x), the file reports the index of (bond, bending, torsion)
coordinate, the equilibrium value corresponding to the current ensemble (λn in Eq. 6.16) and the
current value of the coordinate (r in Eq. 6.16).

EXAMPLES
PRINT WHAM 1000

Print data every 1000 fs.

DEFAULTS
No data are printed.

SEGMENT

NAME
SEGMENT – Define the “solute” in Hamiltonian SGE simulations.

SYNOPSIS
SEGMENT

....
END

Input to ORAC : &SGE 140

DESCRIPTION
This structured command is used to define the “solute” in a Hamiltonian SGE simulation and to
assign the scaling factors to the intrasolute, solute-solvent and solvent-solvent interactions. The
following subcommands may be specified within SEGMENT:

define, kind

• define n1 n2
The define command is used to crop a piece of solute for Hamiltonian scaling in a SGE simu-
lation. One can use up to a maximum of 10 define commands, cropping 10 disconnected (non
overlapping) part of the solute. n1 and n2 are the atom indices of the selected solute parts. The
numeric order of the atoms is that specified in the topology file (see Section 10.3).

• kind inter type
Once the “solute” has been defined using the define subcommand, the subcommand kind is
used to scale the solute-solute, solute-solvent interactions. Possible choices for the string in-
ter type are intra and inter. intra means that the non-bonded energy scaling (see SETUP

command) is applied to the intrasolute non-bonded interactions only, i.e. solute-solvent inter-
actions are not scaled, where by “solvent” we mean the actual solvent and the solute atoms
which were not selected using the define subcommand. inter scales only solute-non solute
(i.e. solvent) non bonded interactions. Intrasolute interactions are NOT scaled if inter is spec-
ified. If the subcommand kind is not specified, the ORAC assumes that both solute-solvent and
solute-solute interactions are scaled.

EXAMPLES
SEGMENT

define 1 10

define 1300 1325

kind inter

END

SETUP

NAME
SETUP – This is the basic command to decide which kind of simulation, Hamiltonian SGE simulation
or SGE simulation in the space of collective coordinates, one wants to carry out. This command also
defines the number of ensembles, the scaling options and the restart option.

SYNOPSIS
SETUP nstates [scale1 scale2 scale3] irest

DESCRIPTION
Hamiltonian SGE simulations.
If the parameters scale1, scale2 and scale3 (real numbers) are specified in the SETUP command,
then a Hamiltonian SGE simulation with total or partial scaling of the potential energy is performed
(simulated-tempering and solute-tempering like simulations, respectively). In such a case the SETUP

command is used to define the number of ensembles (nstates; integer number) and the lowest scal-
ing factor (i.e the highest temperature) of the last ensemble. The number of replicas in the SGE
simulations is equal to the number of processors passed to the MPI routines (nprocs). At variance
with REM, nprocs may be not equal to nstates. The restart option of a SGE simulation is con-
trolled by irest (integer number). The three parameters, scale1, scale2 and scale3, can be different
and refer to scaling features of different parts of the potential energy. scale1 refers to the bending,
stretching and improper torsional potentials, scale2 to the (proper) torsional potential and to the 1-4
non-bonded interactions and scale3 refers to the non bonded potential. IMPORTANT NOTE: when
the Ewald summation is used together with the command SEGMENT(&SGE), scale3 scales only the

Input to ORAC : &SGE 141

direct (short-ranged) part of the electrostatic interactions and the (long-ranged) reciprocal part has a
scaling factor of 1 (i.e. these interactions are not scaled). If scale1 = scale2 = scale3, then an equal
scaling is applied to all parts of the potential (it corresponds to a simulated tempering simulation).
If irest = 0, the run is restarted from a previous one. This implies that the directories PARXXXX
are present and are equal in number to nprocs, i.e. the number of replicas. If irest 6= 0 then the run
refers to a cold start from scratch and

– irest = 1: the scaling factors associated with the intermediate ensembles are derived according

to a geometric progression, namely scalei(m) = scale
(m−1)/(nstates−1)
i , where scalei(m) is the

scaling factor for the potential i of the ensemble m with 1 ≤ m ≤ nstates. For example, if
scalei = 0.6 and nstates = 4, then scalei(1) = 1, scalei(2) = 0.843433, scalei(3) = 0.711379
and scalei(4) = scalei = 0.6. The nprocs replicas are initially distributed as described in Section
6.3.2 (note: we assume Λ1 to correspond to m = 1, i.e., to the unscaled ensemble).

– irest = 2: the scaling factors are read from an auxiliary file called “SGE.set” that must be
present in the directory from which the program is launched using the mpiexec/mpirun com-
mand. This ASCII file has two comment lines on the top and then as many lines as the number
of ensembles (nstates). On each line there are four numbers in the following order: (1) the
number of the ensemble; (2) the scaling factor for bonding and bending potential related to
that ensemble; (3) the scaling factor for torsions and 1-4 interaction potentials related to that
ensemble; (4) the related scaling factor for non-bonding potential related to that ensemble.

SGE simulations in the space of collective coordinates.
If the parameters scale1, scale2 and scale3 are not specified in the SETUP command, then a SGE
simulation in the space of collective coordinates is performed. In such a case the SETUP command
is used to define the number of ensembles (nstates) and the restart option (irest). Their meaning
has been explained above. The collective coordinates are defined using the ADD STR BONDS (bond
coordinates), ADD STR BENDS (bending coordinates) and ADD STR TORS (torsional coordinates). These
commands are defined in the &POTENTIAL environment and must be used in the following form
ADD STR BONDS iat1 iat2 ks ri rf
ADD STR BENDS iat1 iat2 iat3 kb αi αf

ADD STR TORS iat1 iat2 iat3 iat4 kt θi θf
These expressions define the additional harmonic potential entering into Eq. 6.24. For example, if
we perform a SGE simulation in the space of a distance between two atoms, then ADD STR BONDS

must be used. The parameters iat1 and iat2 are the atom numbers, ks corresponds to k of Eq. 6.24
and ri and rf define the intermediate ensembles as follows: λn = ri + (n− 1)(rf − ri)/(nstates− 1),
where λn is the parameter characteristic of the ensemble n with n = 1, 2, . . . , nstates (see Eq. 6.24).

EXAMPLES
SETUP 5 1. 1. 0.6 1
A Hamiltonian SGE simulation is performed. The non bonded potential (direct part) is scaled using
a geometric progression, while the other potential terms are unscaled. The number of ensembles is 5.
SETUP 4 1

ADD STR BONDS 22 143 1. 10. 14.5
ADD STR BENDS 25 33 67 2. 100. 130.
A SGE simulation in the space of collective coordinates is performed using 4 ensembles. The collective
coordinates are one bond and one bending. The bond is related to the atoms 22 and 143. The bending
is defined by the atoms 25, 33 and 67. The ensembles are defined by 2 parameters, Λn = (λbond

n , λbend
n),

where the bond related parameters are λbond
1 = 10, λbond

2 = 11.5, λbond
3 = 13, λbond

4 = 14.5 (in Å)
and the bending related parameters is λbend

1 = 100, λbend
2 = 110, λbend

3 = 120, λbend
4 = 130 (in

degrees). Therefore the transition of a replica from the ensemble Λn to the ensemble Λn+1 involves a
synchronous change of both parameters, i.e. λbond

n → λbond
n+1 and λbend

n → λbend
n+1 . Finally, the harmonic

force constants (see Eq. 6.24) are 1 and 2 kcal mol−1 for bond and bending, respectively.

Input to ORAC : &SGE 142

STEP

NAME
STEP – Set up input information on the frequency of the ensemble transitions and on the free energy
updating options.

SYNOPSIS
STEP Lc La Lb [nav]

DESCRIPTION
This command defines the following parameters. Lc (real number): time interval (in fs) used to
attempt a transition of a replica between adjacent ensembles [see point (4) in Section 6.3.2]; La (real
number): time interval (in fs) used to store the dimensionless works W [n→ n+1] and W [n→ n− 1]
[see point (2) in Section 6.3.2]; Lb (real number): time interval (in fs) used to try a free energy update
[see point (3) in Section 6.3.2]; nav (integer number): number of independent free energy estimates
used to update the weighted free energy averages [see Section 6.3.3]. The parameter nav is optional.
If nav = 0 or not reported in the input, then all free energy estimates stored during the run are used.
IMPORTANT NOTE: it is also possible to change nav “on-the-fly” during the simulation. In such a
case a file called SGE DF FLY.set must be created by the user in the working directory (when using
the serial version of ORAC) or in the parent directory of PARXXXX directories (when using the
parallel version of ORAC). Such a file must contain an integer number alone, which corresponds to nav

(additional characters will be ignored). Note also that if this option is employed then an additional
working file, called SGE DF FLY.dat, will be created by the program in the same directory. This
file contains information related to the single estimates of free energy differences (do not remove it
when restarting from a previous run). If the file SGE DF FLY.set is removed after a simulation and
a new simulation is restarted, then this latter simulation continues as if the former simulation had
been launched with the STEP command specified in the input file.

EXAMPLES
STEP 5. 10. 2000. 40
Ensemble transitions are attempted every 5 fs; dimensionless works are stored every 10 fs; free energy
updates are attempted every 2000 fs; the last 40 free energy estimates are used in the weighted free
energy average of Eq. 6.28.

DEFAULTS
The only allowed default value is related to nav (nav = 0). In such a case, all free energy estimates
are used in the weighted free energy average.

WARNINGS
If STEP is not set in the input, then default values are employed. Default values are Lc = tstep,
La = tstep, Lb = 1000× tstep and nav = 0, where tstep is the simulation time step (in fs) of the hth
intermolecular shell (see Section 4.3).

TRANSITION SCHEME

NAME
TRANSITION SCHEME – Choose scheme for replica transitions

SYNOPSIS
TRANSITION SCHEME scheme

DESCRIPTION
This command defines the replica transition scheme used during an SGE simulation. The allowed
values of the keyword scheme are:

Input to ORAC : &SGE 143

• SEO

Use the so-called “Stochastic Even/Odd” (SEO) transition scheme. At each transition step the
trajectory in ensemble n attempts a transition towards ensemble (n + 1) or (n − 1) with equal
probability.

• DEO

Use the so-called “Deterministic Even/Odd” (DEO) transition scheme. If at the s-th transition
step the trajectory is in ensemble n, a transition is attempted towards ensemble n + (−1)n+s;
that is, toward ensemble (n + 1) at even steps and to ensemble (n − 1) at odd steps, if n is
even; the opposite if n is odd. This scheme is the same as the coupling scheme used in Replica
Exchange, and is expected to give better diffusion in temperature space than SEO [114].

EXAMPLE
TRANSITION SCHEME SEO

DEFAULTS
The default for scheme is DEO

ZERO FREE ENERGY

NAME
ZERO FREE ENERGY – Set up input for zeroing the accumulated free energy averages.

SYNOPSIS
ZERO FREE ENERGY

DESCRIPTION
The presence of this command in the input establishes that the weighted averages of the free energy
differences (see Eq. 6.28) are reset, i.e., the averages accumulated in a previous simulation are
discarded in the new one.

EXAMPLES
ZERO FREE ENERGY

A SGE simulation is performed by resetting the averages of the free energy differences (weight factors).

DEFAULTS
The absence of the ZERO FREE ENERGY command in the input implies that the estimates of the free
energy differences performed during the simulation are accumulated to those of a previous simulation.

Input to ORAC : &SIMULATION 144

10.2.12 &SIMULATION

The environment includes commands which define the type of simulation that is to be carried out. In
particular, commands are available to run steepest descent energy minimization, and molecular dynamics
simulations in various ensembles. The environment &SIMULATION allows the following commands:

ANDERSEN, ANNEALING, BUSSI, ISEED, ISOSTRESS, ISOSTRESSXY, MINIMIZE, MDSIM, SCALE,

STRESS, TEMPERATURE, WRITE PRESSURE

ANDERSEN

NAME
ANDERSEN – The simulation is performed in the NVT Ensemble using the stochastic collision method
by Andersen.

SYNOPSIS
ANDERSEN time

DESCRIPTION
Implement Andersen thermostat with a period for random collision of time femtoseconds.

EXAMPLES
ANDERSEN 1000.0

WARNINGS
Diagnostic - Unsupported

ANNEALING

NAME
ANNEALING – Velocities are multiplied by factor to speed up

SYNOPSIS
ANNEALING scalefactor

DESCRIPTION
Velocities are multiplied by scalefactor.

EXAMPLES
ANNEALING 2.0

WARNINGS
Diagnostic - Unsupported

BUSSI

NAME
BUSSI – The simulation is performed at constant temperature using the rescaling/stochastic method
by G. Bussi et al. [J. Chem. Phys. 126, 014101 (2007)].

SYNOPSIS
BUSSI [taut]

Input to ORAC : &SIMULATION 145

DESCRIPTION
Implement the Bussi thermostat with an adimensional friction factor of taut (default value is 0.1).
The Bussi thermostat can be used also in conjunction with a barostat (see ISOSTRESS, STRESS, NPT
ensemble).

EXAMPLES
BUSSI 0.5

WARNINGS
Experimental - Unsupported.

ISEED

NAME
ISEED – Provide a seed for the random number generator.

SYNOPSIS
ISEED seed

EXAMPLES
ISEED 34567

DEFAULTS
ISEED 12345667

WARNINGS
Diagnostic - Unsupported

ISOSTRES

NAME
ISOSTRESS – Run MD simulations at constant pressure with an isotropic volume variable

SYNOPSIS
ISOSTRESS [PRESS-EXT pext] [BARO-MASS wpr] [COMPR compressibility]

DESCRIPTION
This command allows to run simulations and minimizations at a given pressure with isotropic volume
changes. If the command is used alone ORAC runs simulations in the NPH ensemble. Simulations in
the NPT ensemble can instead be carried out if ISOSTRESS is used in conjunction with the command
THERMOS. The external pressure in MPa is read in by the keyword PRESS-EXT. Also, the keyword
BARO-MASS expects the mass of the barostat in cm−1.[80] The system compressibility in MPa−1 is
read in as input to keyword compr. According to the relation given in Ref. [80] compressibility and
frequency should be consistent. If compr is not specified the default value is used.

EXAMPLES
ISOSTRESS PRESS-EXT 0.1 BARO-MASS 10.0 COMPR 5.3e-4

Run a simulation at pressure 0.1 MPA (atmospheric pressure) with a barostat mass corresponding
to 10.0 cm−1. The compressibility is set to 5.3 × 10−4 MPa−1.

DEFAULTS
ORAC uses the water compressibility at 300 K (i.e. 5.3 × 10−4 MPa−1) as the default compressibility.

WARNINGS

1 ORAC can carry out constant pressure runs with isotropic volume changes only for orthogonal
cells.

Input to ORAC : &SIMULATION 146

2 Make sure that when simulations at constant pressure are run ORAC has been compiled with
the appropriate PRESSURE option in the config.h file (see Chapter 11)

ISOSTRESSXY

NAME
ISOSTRESS – Run MD simulations at constant pressure with an isotropic surface variation (a, b cell

parameters) and independent c cell parameter variation. This protocol is engineered for membrane
simulations.

SYNOPSIS
ISOSTRESSXY [PRESS-EXT pext] [BARO-MASS wpr] [COMPR compressibility]

DESCRIPTION
See command ISOSTRESS.

EXAMPLES
...

&SETUP

CRYSTAL 40.0 40.0 60.0 90.0 90.0 90.0

&END

...

ISOSTRESSXY PRESS-EXT 0.1 BARO-MASS 10.0 COMPR 5.3e-4

...

The a, b cell parameters vary isotropically independent of the c cell parameter under atmospheric
pressure.

DEFAULTS
ORAC uses the water compressibility at 300 K (i.e. 5.3 × 10−4 MPa−1) as the default compressibility.

WARNINGS

1 ORAC can carry out constant pressure runs with isotropic surface changes only for orthogonal
cells.

2 Make sure that when simulations at constant pressure are run ORAC has been compiled with
the appropriate PRESSURE option in the config.h file (see Chapter 11)

FREQUENCIES

NAME
FREQUENCIES – Compute harmonic frequencies of the system. All atoms (solute and solvent) are

included in the dynamical computation.

SYNOPSIS

FREQUENCIES

...

END

DESCRIPTION
The following subcommands may be specified within FREQUENCIES:

dist max, no step, print

Input to ORAC : &SIMULATION 147

• dist max hdist
The differential increment (in Å) for numerical computation of the dynamical matrix. The
default is 0.03 Å, which is OK for most systems and force fields.

• no step steps
Order of Chebyshev polynomial for numerical computation of the dynamical matrix. The
default is 6 which is OK for most systems and force fields

• print OPEN filename
Write frequencies and eigenvectors to file filename. If not specified frequencies are written to
the main output file.

EXAMPLES

FREQUENCIES

print OPEN myfreq.out

END

MINIMIZE

NAME
MINIMIZE – Run steepest descent–like or conjugate gradient minimization at constant volume or at
a given pressure

SYNOPSIS

MINIMIZE

...

END

DESCRIPTION
Run energy minimization using a method of choice (steepest descent of conjugate gradient). After
minimization is done, the dynamical matrix is computed and diagonalized and the normal frequencies
are listed along with eigenvectors. The following subcommands may be specified within MINIMIZE:

CG, SD, WRITE GRADIENT, AGBNP

• GC eps energy
Use conjugate gradient with energy tolerance eps energy.

• SD eps energy
Use steepest descent with energy tolerance eps energy.

• WRITE GRADIENT

Write final gradient at each atom.

• AGBNP

Minimization is done using an AGBNPmodel[161] for implicit solvent. A file named agbnp.param

file must be in the current directory. Dielectric constant of the solvent continuum is set in that
file. In the present release AGBNP works only for constant volume minimization and with no
&SOLVENT specification.

EXAMPLES

MINIMIZE

CG 0.00001

WRITE_GRADIENT

END

Input to ORAC : &SIMULATION 148

MDSIM

NAME
MDSIM – Run molecular dynamics simulations

SYNOPSIS
MDSIM

DESCRIPTION
Use this command to run molecular dynamics simulation in any ensembles. It has no argument.

DEFAULTS
MDSIM is the default.

SCALE

NAME
SCALE – Periodic temperature scaling

SYNOPSIS
SCALE fscale

DESCRIPTION
Use this command for periodically re-scale the temperature with frequency fscale in units of fem-
toseconds. Scaling stands here for random initialization of the system velocities at temperature temp
according to a Gaussian distribution.

EXAMPLES
SCALE 100.0

Reinitialize the system velocities every 100 fs.

WARNINGS
Work only during the rejection phase (see REJECT in environment &RUN).

SCALING

NAME
SCALING – Choose scaling methods for constant pressure simulations

SYNOPSIS
SCALING MOLECULAR

DESCRIPTION
This command sets the scaling method when running with a barostat (see STRESS and ISOSTRESS

directive in this environment).

EXAMPLES
SCALING MOLECULAR

Run with molecular scaling.
SCALING GROUP

This specification has no effect. Starting from release 6.0, only molecular scaling can be done for
NPT runs.

Input to ORAC : &SIMULATION 149

STRESS

NAME
STRESS – Run MD simulations at constant pressure with a non-isotropic volume changes

SYNOPSIS
STRESS [PRESS-EXT pext] [BARO-MASS wpr] [COMPR compressibility]

DESCRIPTION
This command allows to run simulations and minimizations at a given pressure with non-isotropic
volume changes according to the Parrinello-Rahman equation of motion. If the command is used
alone ORAC runs simulations in the NPH ensemble. Simulations in the NPT ensemble can instead
be carried out if STRESS is used in conjunction with the command THERMOS. The external pressure
in MPa is read in by the keyword PRESS-EXT. Also, the keyword BARO-MASS expects the mass of
the barostat in cm−1 (see ISOSTRESS). The system compressibility in MPa−1 is read in as input to
keyword COMPR (see ISOSTRESS)

EXAMPLES

&SIMULATION

MDSIM

TEMPERATURE 300.0 25.0

STRESS PRESS-EXT 0.1 BARO-MASS 10.0 COMPR 1.0e-4

&END

Run a simulation in the NHP ensemble at pressure 0.1 MPA (atmospheric pressure) with a barostat
mass corresponding to 10.0 cm−1. The compressibility is set to 1.0 × 10−4 MPa−1. Velocities are
initialized and (optionally scaled) according to a temperature of 300 K.

&SIMULATION

MDSIM

TEMPERATURE 300.0 25.0

STRESS PRESS-EXT 0.1 BARO-MASS 10.0 COMPR 1.0e-4

THERMOS

...

END

&END

Same as before but with a Nosé thermostat. The simulation is hence in the NPT ensemble with
T=300 K.

DEFAULTS
ORAC uses the water compressibility at 300 K (i.e. 5.3 × 10−4 MPa−1) as the default compressibility.

WARNINGS
Make sure that when simulations at constant pressure are run ORAC has been compiled with the
appropriate PRESSURE option in the config.h file (see Chapter 11)

TEMPERATURE

NAME
TEMPERATURE – Set the system temperature for the run

SYNOPSIS
TEMPERATURE temp dt

Input to ORAC : &SIMULATION 150

DESCRIPTION
The argument temp is the target temperature for the simulation run. dt is used only during the
rejection phase (see command REJECT of environment &RUN) and indicates the temperature window
in Kelvin outside which temperature scaling occurs. Scaling stands here for random initialization
of the system velocities at temperature temp according to a Gaussian distribution. System scaling
in rejection phase occurs also during constant temperature simulations (see command THERMOS in
&SIMULATION).

EXAMPLES
TEMPERATURE 300.0 50.0

WARNINGS
Work only during the rejection phase (see REJECT in environment &RUN).

THERMOS

NAME
THERMOS – Run with Nosé thermostats for NVT or NPT simulations.

SYNOPSIS

THERMOS

...

END

DESCRIPTION
For a faster and better energy equipartition, ORAC uses three thermostats. The first,coupled to the
center of mass momenta of all molecules in the system, the second coupled to the momenta of the
atoms of the solute (if present) and the third coupled to the momenta of solvent atoms (if present).
The following subcommands may be specified within THERMOS:

cofm, defaults,solute, solvent, temp limit

• cofm freq mass
Specify the mass of the barostat coupled to the centers of mass of the molecules. This mass is
also assigned to the barostat coupled to the box momenta in NPT simulation, in case STRESS

or ISOSTRESS have been specified. Actually, what is entered with the variable freq mass is the
(approximate) frequency of oscillation of the thermostat. The actual “mass” W (in units of
mass times a length to the power of two) of the barostat may be recovered according to the
relation freq mass = (2NkBT/W)1/2.[80]

• defaults

Use defaults value for “mass” variables. The defaults are freq mass solute = freq mass solvent
freq mass = 30.0.

• solute freq mass solute
Specify mass (units of cm−1) of the barostat coupled to the momenta of the solute atoms.

• solvent freq mass solvent
Specify mass (units of cm−1) of the barostat coupled to the momenta of the solvent atoms.

• temp limit maxtemp
Specify maximum temperature allowed for all Nosé thermostat when the argument of the com-
mand REJECT(&RUN) is different from zero. In principle, for a system out of equilibrium, no
temperature scaling should be enforced when using Nosé thermostatting. Actually, when equi-
librating systems in the NVT or NPT ensembles, it is strongly recommended to specify the
subcommand temp limit along with a rejection time REJECT(&RUN) as normally done for con-
ventional scaling in NVE dynamics. In a NV(P)T system out of equilibrium, while the tempera-
ture of the system remains close to the selected temperature, the temperature of the thermostat
coordinates (which are not themselves thermostatted) may raise dramatically, if not scaled.

Input to ORAC : &SIMULATION 151

EXAMPLES

&SIMULATION

TEMPERATURE 300.0 25.0

MDSIM

THERMOS

cofm 30.0

solute 30.0

solvent 30.0

END

&END

Run a simulation in the NVT ensemble at T = 300 K.

WRITE PRESSURE

NAME
WRITE PRESSURE – Write the pressure of the system during a simulation

SYNOPSIS
WRITE PRESSURE

DESCRIPTION
This command is used to print the system pressure and stress tensor to the simulation output. It
has no argument.

WARNINGS
Make sure that when simulations at constant pressure are run ORAC has been compiled with the
appropriate PRESSURE option in the config.h file (see Chapter 11)

Input to ORAC : &SOLUTE 152

10.2.13 &SOLUTE

The &SOLUTE environment includes commands which are concerned with specific aspects of the solute force
field and structure. The following commands are allowed:

COORDINATES, DEF SOLUTE, SCALE CHARGES, SPACE GROUP

COORDINATES

NAME
COORDINATES – Define the coordinates of a solute.

SYNOPSIS
COORDINATES filename

DESCRIPTION
Read the coordinates of the solute (in PDB format) form file filename. This command is best used
when also the solvent atoms must be read in.

EXAMPLES

&SETUP

CRYSTAL 20.00 20.00 20.00 90.0 90.0 90.0

REPLICATE 2 2 2

&END

&SOLUTE

COORDINATES solute.pdb

SPACE_GROUP OPEN benz.group P 2/c

&END

&SOLVENT

CELL SC

INSERT 1.5

COORDINATES solvent.pdb

GENERATE RANDOMIZE 4 4 4

GENERATE RANDOMIZE 8 8 8

&END

In this example the coordinates of the solute are read in form the file solute.pdbwhile the coordinates
of the solvent molecule (see &SOLVENT) are read in form the file solvent.pdb. As is now, this
input would produce in a box of 20 × 20 × 20 Å3, 1 solute along with 64 replicas (see command
GENERATE(&SOLVENT) of the solvent molecule. Of this 64 molecule, those that overlap with the solute
molecule (see command INSERT(&SOLVENT)) are discarded. If the second line in the environment
&SOLUTE is uncommented, the solute is assumed to be arranged in the MD box according to the
space group specified by the SPACE GROUP directive. In the present example the group contains 4
molecules per unit cell. So 4 molecules of solute are arranged in the box according to the P 2/c space
group along with 64 replicas of solvent molecules. Again the overlapping solvent molecules (say no)
will be discarded. If we comment the line GENERATE RANDOMIZE 4 4 4 and uncomment the lines #
GENERATE RANDOMIZE 8 8 8 and # REPLICATE 2 2 2 we double the size of the sample: we will have
8 cell of 20× 20× 20 Å3 each with 4 molecules of solute and 8× 8× 8 = 512 solvent molecules minus
8× no overlapping molecules.

Input to ORAC : &SOLUTE 153

DEF SOLUTE

NAME
DEF SOLUTE – Define a solute molecule

SYNOPSIS
DEF SOLUTE begin end

DESCRIPTION
This command is used in conjunction with the command STRUCTURES in &PROPERTIES and TEMPLATE

in &INOUT. It defines the solute atoms from which mean square displacements are to be computed. The
arguments indicate the ordinal numbers of the first begin and the last atom end of a solute molecule.
These numbers may be deduced by inspection of the Template file. The command DEF SOLUTE can
appear more than one time in the environment. The atoms of different solute molecules defined with
this command may overlap.

EXAMPLES

&SETUP

...

DEF SOLUTE 1 10

DEF SOLUTE 31 57

END

...

&ANALYSIS

UPDATE 3 2.0

START 1

STOP 199

&END

...

&PROPERTIES

STRUCTURES

inst_xrms heavy

print inst_xrms 1 OPEN isnt.xrms

END

&END

Computes instantaneous mean square displacements for heavy atoms for the solute chunks 1-10 and
31-57. ...

WARNINGS
This command has no action while running a simulation. It works only during analysis stage (see
&ANALYSIS)

SCALE CHARGES

NAME
SCALE CHARGES – Scale the total charge on the solute to zero

SYNOPSIS
SCALE CHARGES nmol i1 i2 ...inmol

DESCRIPTION
If Q is the excess charge on the solute, electro-neutrality is imposed by equally distributing −Q
charge over the atoms of nmol disconnected molecules of solute specified by the indices i1, ...inmol.
Disconnected molecules are ordered according to the sequence given in the structured command JOIN.

Input to ORAC : &SOLUTE 154

EXAMPLES
SCALE CHARGES 4 1 5 7 11

The excess charge is distributed over 4 molecules: the 1-st, the 5-th, the 7-th and the 11-th molecule
as specified in the sequence give in JOIN.

WARNINGS
This command is active only if the solute topology and parameter list is actually computed and not

read from a binary file (i.e. READ TPGPRM in &PARAMETERS must be inactive).

SPACE GROUP

NAME
SPACE GROUP – Generate a simulation box applying symmetry operations to an input asymmetric
unit

SYNOPSIS
SPACE GROUP OPEN filename group

DESCRIPTION
Read the space group group parameters (nonequivalent molecules and corresponding interchange

matrices and fractional translations) form the ASCII file filename. The file filename is a user database
which may contain many entries corresponding to different space groups. The following is an example
of an entry of this file:

Space Group Symmetry P 2_1

2

1.00 .00 .00

.00 1.00 .00

.00 .00 1.00

.00 .00 .00

-1.00 .00 .00

.00 1.00 .00

.00 .00 -1.00

.00 .50 .00

Space Group Symmetry P 2/c

4

1.00 .00 .00

.00 1.00 .00

.00 .00 1.00

.00 .00 .00

-1.00 .00 .00

.00 -1.00 .00

.00 .00 0.00

.50 .00 .50

-1.00 .00 .00

.00 1.00 .00

.00 .00 -1.00

.00 .50 .50

1.00 .00 .00

.00 -1.00 .00

.00 .00 -1.00

.50 .50 .00

The space group file is parsed by ORAC as usual by interpreting the composing tokens of each line
string. The space group name is taken to begin after the third word Symmetry in the first line and

Input to ORAC : &SOLUTE 155

may be composed of more than one word. The number of nonequivalent molecules nmol in the cell is
read in the immediately following line. Then, for each molecule, four lines must be provide where the
interchange matrix and the fractional translations are read in. No comment lines may be included.
In the present example, for the first molecule the identity matrix and the zero translation are given
from line 3-6, while in, e.g., the P21 group, for the second molecule a C2y (line 7-9) rotation and a
0.5 fractional translation (line 10) along the same axis are given. The coordinates of the asymmetric
unit must be provided in input through the command READ PDB. The command REPLICATE is used to
generate a simulation box larger than the unitary cell. Note that the cell parameters of the simulation
box are input to the command CRYSTAL.

EXAMPLES
SPACE GROUP sgroup.dat P 2 1

The symmetry transformations of the space group P2 1 are applied to the asymmetric unit in order
to generate the coordinates of the other molecules contained in the unit cell.

Input to ORAC : &SOLVENT 156

10.2.14 &SOLVENT

The &SOLVENT environment includes commands which are concerned with specific aspects of the solvent
structure. In the present version of ORAC force field and topology specifications are given in the same
Force fields and topology files used for the solute. The following commands are allowed:

ADD UNITS CELL COORDINATES GENERATE INSERT READ SOLVENT REDEFINE

ADD UNITS

NAME
ADD UNITS – Add solvent molecules

SYNOPSIS
ADD UNITS nmol

DESCRIPTION
Reads nmol molecules form PDB file specified in the READ PDB(&SETUP) command. This command
must be entered when starting from a PDB file which includes both solute and solvent coordinates.

EXAMPLES

&SETUP

CRYSTAL 20.00 20.00 20.00 90.0 90.0 90.0

READ_PDB solute+342solvent.pdb

&END

&PARAMETERS

READ_TPG_ASCII ../tpg-prm/amber95.tpg

READ_PRM_ASCII ../tpg-prm/amber95.prm

JOIN SOLUTE

ala-h ala ala ala ala-o

END

JOIN SOLVENT

hoh

END

&END

&SOLVENT

ADD UNITS 342

&END

...

The file solute+342solvent.pdb contains the coordinates of a penta-alanine along with 342 water
molecules.

CELL

NAME
CELL – Define the initial lattice for the solvent

SYNOPSIS
CELL type

Input to ORAC : &SOLVENT 157

DESCRIPTION
This command defines the Bravais lattice type to be used when generating a solvent lattice with
GENERATE. type may be BCC, FCC, or SC, corresponding to Body Centered Cubic, Face Centered
Cubic, and Simple Cubic lattices, respectively.

EXAMPLES

&SOLVENT

CELL SC

GENERATE RANDOMIZE 4 4 4

....

&END

COORDINATES

NAME
COORDINATES – Define the coordinates of a solvent molecule

SYNOPSIS
COORDINATES filename

DESCRIPTION
Read the coordinates of the solvent molecule (in PDB format) from file filename.

EXAMPLES

&SETUP

CRYSTAL 20.00 20.00 20.00 90.0 90.0 90.0

&END

&SOLVENT

CELL SC

INSERT 1.5

COORDINATES solvent.pdb

GENERATE RANDOMIZE 4 4 4

&END

In this example the coordinates of the solvent are read in from the file solvent.pdb (see &SOLVENT).
This input would produce 64 solvent molecules in a box of 20 × 20 × 20 Å3. For generating solvent
in presence of the solute see COORDINATES(&SOLUTE)

GENERATE

NAME
GENERATE – Replicate solvent molecules.

SYNOPSIS
GENERATE [RANDOMIZE] ia ib ic

DESCRIPTION
This command is used to generate a lattice of ia×ib×ic cells belonging to the Bravais lattice specified
in the command CELL. The optional string RANDOMIZE is used for assigning a random rotation to each
solvent molecule in the lattice.

EXAMPLES

Input to ORAC : &SOLVENT 158

&SOLVENT

CELL SC

GENERATE RANDOMIZE 4 4 4

....

&END

The elementary cell is simple cubic with one molecule per unit cell. 64 cells are generated (four in
each direction).

INSERT

NAME
INSERT – Insert solute molecules in the solvent

SYNOPSIS
INSERT radius

DESCRIPTION
This command is designed to insert solute molecules in a simulation box containing solvent molecules.
The solvent molecules which overlap with the solute are discarded. ORAC assumes that two molecules
overlap if their distance is less than the sum of their respective Lennard–Jones radii multiplied by
radius. There is no optimal value for radius, however reasonable values are within 0.6 and 0.8.

EXAMPLES
INSERT 0.6

WARNINGS
This command has no action if CONTROL in &RUN is different from zero, i.e. if the system coordinates
are read from a restart file (see RESTART in &INOUT).

READ SOLVENT

NAME
READ SOLVENT – Read solvent molecules

SYNOPSIS
READ SOLVENT nmol

DESCRIPTION
This command is a synonymous of ADD UNITS

REDEFINE

NAME
REDEFINE – Read solvent molecules

SYNOPSIS
REDEFINE unit name

DESCRIPTION
This command is used for deleting the unit unit name from the solute list and assigning it to the
solvent molecules. As long as energies and properties are concerned, the unit unit name will pertain
to the solvent.

Input to ORAC : &SOLVENT 159

EXAMPLES

&PARAMETERS

READ_TPGPRM_BIN benz.prmtpg

&END

...

&SOLVENT

REDEFINE po4

&END

We redefine the solute unit po4 as a solvent unit

Input to ORAC : Force Field & Topology 160

10.3 Input to ORAC : Force Field and Topology Files

Compared to molecular liquids, simulating any complex macromolecule, poses additional problems due to
the covalent structure of the systems and to the related complexity of the potential force fields. ORAC builds
the covalent topology needed to evaluate the potential energy from the structure of its constituents. In
case of a protein the constituents are the amino acids. Also, ORAC tries to to minimize the size and the
complexity of the actual input needed to construct this topology.

In practice, the minimal information to be provided in order to describe the residue topology is the
constituent atoms, the covalent bonds and, in case of polymers or biopolymers, the terminal atoms used to
connect the unit to the rest of the chain. In addition, in order to assign the correct potential parameters
to the bonds, bending and torsions of the residue, the type of each atom needs to be specified. Finally, to
each atom type must correspond a set of non-bonded parameters.

When the bonding topology of the different residues contained in the solute molecule(s) is known, the
units are linked together according to their occurrence in the sequence. In this fashion the total bonding
topology is obtained. From this information, all possible bond angles are collected by searching for all
possible couples of bonds which share one atom. Similarly, by selecting all couples of bonds linked among
each other by a distinct bond, torsions can be obtained.

The following sections describe the format of the topology and force field parameters files read by
ORAC . The reading of the two files is carried out immediately after the command READ TPF ASCII and
READ PRM ASCII in the environment &PARAMETERS are encountered in the input file. The topology and force
field parameters files are strongly dependent from each other and together fully define the molecular force
field of the solute molecule(s). In the ORAC distribution archive the most recent AMBER[4] force field and
topology files are provided.

10.3.1 Force Field Parameters

The force field parameters must be placed in the file defined by the command READ PRM ASCII of the
environment &PARAMETERS. This file can contain the directives defining the stretching, angle bending,
proper and improper torsion, Lennard-Jones potential parameters. Each directive is terminated by the
keyword END subsequent to the last line of input. The allowed commands are the followings:

BENDINGS, BOND, NONBONDED [MIXRULE, NOMIXRULE], TORSION [PROPER, IMPROPER]

BENDING

NAME
BENDINGS – Read angle bending potential parameters

SYNOPSIS
BENDINGS

...

typ1 typ2 typ3 Kangle θ0
...

END

DESCRIPTION
The command reads a sequence of angle bending potential parameters. typ1, typ2 and typ3 are three
character strings, not to exceed 7 characters, indicating the atom types of the three atoms involved in
the angle bending interaction. Kangle and θ0 are the angle bending force constant and the equilibrium
angle, respectively. The units used for the Kangle and r0 are Kcal mol−1 rad−2 and degree.

EXAMPLES

BENDINGS

cb c na 70.00 111.30

Input to ORAC : Force Field & Topology 161

cb c o 80.00 128.80

cm c o 80.00 125.30

n* c na 70.00 115.40

END

BOND

NAME
BOND – Read stretching potential parameters

SYNOPSIS
BOND

...

typ1 typ2 Kstretch r0
...

END

DESCRIPTION
The command reads a sequence of stretching potential parameters. typ1 and typ2 are two character
strings, not to exceed 7 characters, indicating the atom types of the two atoms involved in the
stretching interaction. Kstretch and r0 are the stretching force constant and the stretching equilibrium
distance, respectively. The units used for the Kstretch and r0 are Kcal mol−1 Å−2 and Å.

EXAMPLES

BOND

c ca 469.00 1.409

c cb 447.00 1.419

c cm 410.00 1.444

END

NONBONDED

NAME
NONBONDED – Read Lennard-Jones parameters

SYNOPSIS

NONBONDED [MIXRULE, NOMIXRULE]

...

END

DESCRIPTION
The command reads the Lennard-Jones parameters for the solute non–bonded interactions:

A

r12
−

B

r6
= 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

(10.1)

Arguments MIXRULE and NOMIXRULE to the command indicate if Lennard-Jones mixing rules are to
be used by ORAC or, conversely, explicit mixed Lennard-Jones potentials are to be expected in input.
The format of the nonbonded potential is different in the two alternative cases. If mixing rules are
to be found the input to NONBONDED looks like:
NONBONDED MIXRULE

...

Input to ORAC : Force Field & Topology 162

typ1 rmin ǫ γ mass
...

END

Here, typ1 is a character string, not to exceed 7 characters, labeling the atom type for the atom; rmin

is the radius corresponding to the minimum of the Lennard-Jones potential; ǫ the Lennard-Jones
well depth; γ is reserved for later usage and should be set to zero; mass is the atom mass. The
non–bonded potential format changes if different Lennard-Jones potentials must be used for the 1-4
interactions in which atom type typ1 is involved:
NONBONDED MIXRULE

...

typ1 rmin ǫ r14min ǫ14 mass
...

END

Here, parameters r14min ǫ14 are used only for 1-4 interactions. In case the argument NOMIXRULE is
used, the input to NONBONDED looks like:
NONBONDED NOMIXRULE

...

typ1 rmin ǫ γ mass
...

END

...

Bij Aij

...

First the sequence of the Ntype force field atom types and Lennard-Jones parameters is read inter-
rupted by the keyword END at the beginning of a new line. Second, a list of the Ntype (Ntype + 1) /2
interaction potential parameters B and A must be provided in input. For most of the biomolecular
force fields non–bonded mixing rules are commonly used.

EXAMPLES 1

NONBONDED MIXRULE

h4 1.409 0.015 0.000 1.008

o 1.661 0.210 0.000 16.000

ca 1.908 0.086 0.000 12.010

END

EXAMPLES 2

NONBONDED NOMIXRULE

h 0.000 0.000 0.000 1.008

o 1.700 0.120 0.000 15.999

c 2.000 0.110 0.000 12.011

END

0.0 0.0 Interaction type [h -- h]

0.0 0.0 Interaction type [h -- o]

0.0 0.0 Interaction type [h -- c]

1200.0 600700.0 Interaction type [o -- o]

1000.0 800000.0 Interaction type [o -- c]

2000.0 500100.0 Interaction type [c -- c]

WARNINGS
If the 1–4 interaction parameters are not provided in input to NONBONDED MIXRULE, the regular non–
bonded parameters multiplied by the 1–4 factor LJ-FUDGE (see environment &POTENTIAL) are used
instead. For interactions involving one atom for which the 1–4 parameters are given and another for
which they are not, regular non–bonded parameters for the interaction are used multiplied by the
eventual LJ-FUDGE factor.

Input to ORAC : Force Field & Topology 163

TORSION PROPER

NAME
TORSION – Read proper torsion potential

SYNOPSIS
TORSION PROPER

...

typ1 typ2 typ3 typ4 Kphi n γ
...

END

DESCRIPTION
typ1, typ2, typ3 and typ4 are four character strings, not to exceed 7 characters, indicating the atom
types of the four atoms involved in the torsion interaction (a x string is taken to be as a wild card
indicating any atom). The torsional axis, according to the ORAC convention is the one connecting
the type2 and type3. The parameters Kφ and n and γ are defined in Eq. 4.3. Kphi is in unit of Kcal
mol−1; n is an integer indicating the number of minima(maxima) for 360 degree rotation about the
torsional axis; γ is given in degrees and can be either 0.0 or 180.0.

EXAMPLE

TORSION PROPER

x c ca x 3.6250 2.0 180.0

x cw na x 1.5000 2.0 180.0

ct ct os ct 0.3830 3.0 0.0

ct ct os ct 0.1000 2.0 180.0

END

TORSION IMPROPER

NAME
TORSION IMPROPER – Read proper torsion potential

SYNOPSIS

– AMBER form [cosine]
TORSION IMPROPER

...

typ1 typ2 typ3 typ4 Kphi n γ [cosine]

...

END

– CHARMM form [harmonic]
TORSION IMPROPER

...

typ1 typ2 typ3 typ4 Kphi angle [harmonic]

...

END

DESCRIPTION
typ1, typ2, typ3 and typ4 are four character strings, not to exceed 7 characters, indicating the atom
types of the four atoms involved in the torsion interaction (a x string is taken to be as a wild card
indicating any atom) For improper torsions, ORAC allows both the CHARMM–like form (a simple
harmonic potential) or the AMBER–like form (a torsional potential):

For the CHARMM form Kphi must be given in Kcal mol−1 rad−2, while angle is the equilibrium
angle of the improper torsion in degree.

Input to ORAC : Force Field & Topology 164

For the AMBER form the meaning of the symbol are identical to those described in the TORSION

PROPER directive.

EXAMPLE

TORSION IMPROPER

x x ca h4 1.1000 2.0 180.0 cosine

x x ca h5 1.1000 2.0 180.0

ck cb n* ct 1.0000 2.0 180.0 cosine

cm c n* ct 1.0000 2.0 180.0 cosine

ha cpa cpa cpm 29.40 0.0 harmonic

ha cpb c c 20.00 0.0 harmonic

ha ha c c 20.00 180.0 harmonic

END

10.3.2 Topology

ORAC is instructed to read the topology file by the command

READ TPG ASCII field.tpg

of the &PARAMETERS environment. File field.tpg contains information on the series of residues needed to
define the topology of the actual solute molecules. This information is provided through a series of free
format keywords and their corresponding input data as done in the main input file sys.mddata. In this
way, ORAC reads the solute connectivity, the atomic charges, the atomic labels corresponding to those
found in the PDB file, and the atomic types according to the chosen force field (i.e. AMBER, CHARMM
or others). Moreover, the atomic groups and the improper torsions are also defined.

As for the mail input file, the file field.tpg is parsed and the composing substrings of each line are
interpreted. Comment lines must have the “#” character in column 1. Each residue or unit definition
starts with the keyword

RESIDUE residue name

where residue name is a character label which must match labels found in the command JOIN of the envi-
ronment &PARAMETERS, and must end with the keyword RESIDUE END. These residue delimiting keywords
are the only one in capital letters in field.tpg (see the valine example later on in this section)

Atom type definitions and charges are read in between the keywords atom and end. For each atom
three strings must be entered: the PDB atom label, the potential type according to the selected force field
as specified in parameter file (see Sec.10.3.1) and the point charge in electron units. Groups are composed
of all atoms entered between two successive group keywords. The PDB labels must be all different from
each others since they are used to establish the topology and connectivity of the solute.

The bond connectivity is specified between the keywords bond and end by providing the series of bonds
present in the residue. Each bond is specified by two atom labels corresponding to the atoms participating
to the bond.

All possible bendings and proper torsions are computed by ORAC from bond connectivity and need
not to be specified. Improper torsions must instead be provided. Improper torsion are used to impose
geometrical constraints to specific quadruplets of atoms in the solute. In modern all–atoms force fields,
improper torsions are generally used to ensure the planarity of an sp2 hybridized atom. The convention
in ORAC to compute the proper or improper torsion dihedral angle is the following: If r1, r2, r3, r4 are the
position vectors of the four atoms identifying the torsion, the dihedral angle χ is defined as

χ = arcos

[

(r2 − r1)× (r3 − r2)

|r2 − r1||r3 − r2|
•
(r3 − r2)× (r4 − r3)

|r3 − r2||r4 − r3|

]

(10.2)

Input to ORAC : Force Field & Topology 165

RESIDUE

NAME
RESIDUE – Read covalent topology of the residue

SYNOPSIS
RESIDUE res1
...
END

DESCRIPTION
The command RESIDUE read the covalent topology for the residue labeled res1. res1 must be a
character string not to exceed 8 characters. The environment generated by this command can accept
the following keywords:

atoms, bonds, rigid, dihed, imphd, omit angle, backbone termatom, acc, don

This are described in the following paragraphs.

EXAMPLES
Residue topology of amino acid valine.

RESIDUE val (Total Charge = 0.0)

atoms

group

n n -0.41570

hn h 0.27190

ca ct -0.08750

ha h1 0.09690

group

cb ct 0.29850

hb hc -0.02970

group

cg1 ct -0.31920

hg11 hc 0.07910

hg12 hc 0.07910

hg13 hc 0.07910

group

cg2 ct -0.31920

hg21 hc 0.07910

hg22 hc 0.07910

hg23 hc 0.07910

group

c c 0.59730

o o -0.56790

end

bonds

cb ca cg1 cb cg2 cb n hn

n ca o c c ca ca ha

cb hb cg1 hg11 cg1 hg12 cg1 hg13 cg2 hg21

cg2 hg22 cg2 hg23

end

imphd

-c ca n hn ca +n c o

end

Input to ORAC : Force Field & Topology 166

termatom n c

backbone n ca c

END

atoms

NAME
atoms – Read the list of atoms forming the residue.

SYNOPSIS
atoms

group

...

lab1 typ1 charge
...

group

...

end

DESCRIPTION
The command read the list of atoms and corresponding charges charge in electron forming the residue.
The list can (and must!) contain the keyword group to define atomic groups and is terminated by
end. lab1 and typ1 are both character strings, not to exceed 7 characters, and correspond to the
atom label and type, respectively. While, each atom type listed by atoms must be defined in the
parameters file, each atom label defines uniquely a particular atom of the residue. ORAC expects that
labels found in atoms be consistent with those used in the input coordinates (i.e. in the PDB file).
Atoms in between two consecutive group (or between a group and the final end) form the atomic
group.

EXAMPLES

atoms

group

n n -0.41570

hn h 0.27190

ca ct -0.08750

ha h1 0.09690

group

cb ct 0.29850

hb hc -0.02970

end

WARNINGS
The keyword atoms must appear at the beginning of the RESIDUE environment.

rigid

NAME
rigid – Define a rigid unit

SYNOPSIS
rigid

DESCRIPTION
Not supported

Input to ORAC : Force Field & Topology 167

bonds

NAME
bonds – Read list of bonds

SYNOPSIS
bonds

...

lab1 lab2 lab3 lab4 ...
...

end

DESCRIPTION
The keyword is used to define a list of covalent bonds among the atoms forming the residue. The list
is terminated by end. On the lines following bonds a series of pairs of atom labels is expected. In
the synopsis, atom lab1 is covalently bound to atom lab2 and lab3 to lab4. The labels appearing in
input to bonds must be defined in the atom list given with the command atoms.

EXAMPLES

bonds

n ca o c c ca ca ha

cg2 hg22 cg2 hg23

end

WARNINGS
The keyword atoms must appear before bonds.

omit angles

NAME
omit angles – Provide a list of angle bendings to omit

SYNOPSIS
omit angles

...

lab1 lab2 lab3 lab4 lab5 lab6 ...
...

end

DESCRIPTION
Given the list of bonds for the solute molecule(s) ORAC generates all possible angle bendings. The
keyword omit angles allows the deletion of any angle bendings from the residue angle bendings list.
Following the line with omit angles a series of triplets of atom labels is expected. In the synopsis,
lab1, lab2 and lab3 are the three atoms involved in one angle bending to be deleted from the residue
list. Labels starting with a - or a + correspond to atoms belonging to the preceding and following
residue in the solute sequence.

EXAMPLES

omit_angles

n ca c c ca ha

end

WARNINGS
The keyword bonds must appear before omit angles .

Input to ORAC : Force Field & Topology 168

dihed

NAME
dihed – Define proper torsions list for the residue. Obsolete Unsupported

SYNOPSIS
dihed

...

lab1 lab2 lab3 lab4 lab5 lab6 lab7 lab8 ...
...

end

DESCRIPTION
In more modern biomolecular force fields all possible torsion angles are included in the interaction
potential (see AUTO DIHEDRAL of the environment &SOLUTE). dihed includes only selected proper
torsions in the potential as it was required by earlier force fields. Each proper torsion is defined by
a quadruplet of atom labels (see synopsis). Labels starting with a - or a + refer to atoms belonging
to the preceding and following residue in the solute sequence.

EXAMPLES

dihed

-c n ca cb n ca cb cg1 n ca c +n

end

WARNINGS
The keyword bonds must appear before dihed. If AUTO DIHEDRAL of the environment &SOLUTE is
selected, the keyword dihed has no effect.

imphd

NAME
imphd – Define improper torsions list for the residue

SYNOPSIS
imphd

...

lab1 lab2 lab3 lab4 lab5 lab6 lab7 lab8 ...
...

end

DESCRIPTION
The keyword includes only selected improper torsions. Following imphd a list of improper torsions
ended by the keyword end must be provided. Each improper torsion is defined by a quadruplet of
atom labels (see synopsis). Labels starting with a - or a + refer to atoms belonging to the preceding
and following residue in the solute sequence.

EXAMPLES

imphd

-c ca n hn ca +n c o

end

WARNINGS
The keyword bonds must appear before imphd.

Input to ORAC : Force Field & Topology 169

backbone

NAME
backbone – Define the backbone atoms for the residue

SYNOPSIS
backbone lab1 lab2 lab3 ...

DESCRIPTION
With backbone a list of atom labels (lab1, lab2, lab3) is provided which belong to the biomolecule
backbone. The corresponding atoms are uniquely identified. The backbone atoms are only used by
ORAC in the calculation of run time properties. The command can be repeated as many times as
necessary.

WARNINGS
The keyword bonds must appear before backbone.

termatom

NAME
termatom – Define a pair of atoms which are covalently bound to other residues

SYNOPSIS
termatom lab1 lab2

DESCRIPTION
termatom is used to define two atoms, whose labels are lab1 and lab2, which are connecting the
residue to the rest of the biopolymer. If the residue has only one connecting atom or has none, one
of the labels or both must be replaced by a *.

EXAMPLES 1
Connecting atoms for an amino acid:
termatom n c

EXAMPLES 2
Connecting atoms for a residue not covalently connected with the others residues of any solute
sequence: termatom * *

WARNINGS
This keywords must be always present in any RESIDUE environment.

acc

NAME
acc – List the hydrogen bond acceptor atoms. Experimental - Unsupported

SYNOPSIS
acc lab1 lab2

DESCRIPTION
The labels lab1, lab2 are string character indicating the atom types (see command atom). If only one
label is specified, label1 refers to the hydrogen bond acceptor. If also label2 is specified, the latter is
the acceptor and label1 while refers to the conjugate acceptor bonded atom (e.g. N and H (acceptor)
in the C-O bond)

Input to ORAC : Force Field & Topology 170

don

NAME
don – List the hydrogen bond donor atoms. Experimental - Unsupported

SYNOPSIS
don lab1 lab2

DESCRIPTION
The labels lab1, lab2 are string character indicating the atom types (see command atom). If only
one label is specified, label1 refers to the hydrogen bond donor. If also label2 is specified, the latter
is the donor and label1 while refers to the conjugate acceptor bonded atom (e.g. C (acceptor) and O
(donor) in the C-O bond)

Chapter 11

Compiling and Running ORAC

11.1 Compiling the Program

11.1.1 Serial version

ORAC has been written mostly in FORTRAN. ORAC 6.0 can be compiled with gfortran, the Gnu FOR-
TRAN compiler for GCC, the Gnu Compiler Collection. ORAC 6.0 is currently supported only for Linux
operating systems. The code does not require any library to run except for the standard mathematical
libraries. ORAC can use the efficient FFTW suite[162] for Fourier Transform in the evaluation of the PME
contribution to reciprocal lattice forces, but has its own built-in FFT libraries. You must have the Gnu

version of make to make the executable. Starting form this release, a configure script is provided for
generating the Makefile from a Makefile.in template. The ORAC distribution file is a tar archive containing
the ORAC source code and a few examples which illustrate most of the important features of the program.

The untarring of the distribution file using the command tar -xvf orac.tar6.0.gz will create a
directory with the following sub-directories:

./ORAC

./ORAC/doc

./ORAC/etc

./ORAC/lib

./ORAC/pdb

./ORAC/src

./ORAC/tests

./ORAC/tools

The directory ./ORAC/doc contains this manual in pdf and HTML format.

The directory ./ORAC/etc contains material for developers

The directory ./ORAC/lib contains the force field parameters (AMBER03) and topology files (see
sec. 10.3)

The directory ./ORAC/pdb contains The Protein Data Bank format coordinate files for running the
input examples in ./ORAC/tests

The directory ./ORAC/src contains the source code. Read the copyright agreement COPYRIGHT NOTICE

before modifying or distributing the code.

The directory ./ORAC/tools contains ancillary codes for analyzing MD data.

To compile ORAC just do

% ./configure [options]

% make

171

Compiling the Program 172

This will create an executable ORAC in the target directory as specified in [options]. When no options are
specified, the default target GNU [no MPI/OpenMP/fftw support] is created.

In order to see the list of the available configure options cd into the ./ORAC/src directory and do

% ./configure -help

The program is known to compile and run with gcc 4.8 and Intel Fortran Compiler (10.1 to 14) both in
32- and 64- bit architecture; XL Fortran for AIX (V12.1-V14.1) and XL C/C++ for AIX (V10.1-V12.0);
PGI Fortran 2003. To compile ORAC with the Intel FORTRAN compiler do

% cd $HOME/ORAC/src

% ./configure -Intel

% make

This will produce the executable in the ./ORAC/src/INTEL directory. To compile ORAC with the Intel
FORTRAN compiler, MPI support and FFTW. libraries do

% cd $HOME/ORAC/src

% ./configure -Intel -FFTW -MPI

% make

A directory $HOME/src/INTEL-FFTW-MPI will be created. Nota Bene: you must have the FFTW libraries in-
stalled in your system. For parallel execution, libfftw3, libfftw3 omp, libfftw3 threads are needed.
In Debian/Ubuntu systems these libraries are provided in the packages fftw3 and fftw3-dev. An alternative
path for fftw libraries can be specified in the -FFTW configure option [-FFTW[=alt path]]. For example

% cd $HOME/ORAC/src

% ./configure -Intel -FFTW=alt_path -MPI

% make

To compile ORAC with the Intel FORTRAN compiler, MPI and OpenMP support and FFTW libraries do

% cd $HOME/ORAC/src

% ./configure -Intel -FFTW -MPI -OMP

% make

This will generate a directory ./ORAC/src/INTEL-FFTW-OMP-MPI.

11.1.2 Parallel version

ORAC implements a weak scaling parallel algorithm via MPI calls in H-REM/SGE generalized ensemble
simulations or driven simulations technologies based on the Crooks theorem. and a strong scaling parallel
approach on the OpenMP layer based on particle decomposition for the computation of the forces. The
nature of the executable (serial, MPI only and MPI/OpenMP with or without FFTW libraries) is straight-
forwardly controlled by the specification of the options of the configure command, as described above.
Parallel execution can therefore be done on either MPI or OpenMP level or on the two combined levels
using the appropriate target executable. ORAC is designed to maximize the sampling efficiency of a single
MD simulation job on a NUMA multicore platforms using advanced highly parallel techniques, such as
H-REM or SGE, or even zero-communication embarrassingly parallel approach like FS-DAM. We deem as
“thermodynamic” the parallelism related to such weakly scaling algorithms. Thermodynamic parallelism in
ORAC is handled only at the distributed memory MPI level, with a minimal incidence of the inter-replica
(for H-REM and SGE simulations) communication overhead or no overhead at all for the NE indepen-
dent trajectories in FS-DAM simulations. Therefore, the number of MPI processes in ORAC (defined via
the mpiexec command) simply equals the number of replica/walkers in H-REM/SGE simulations or the
number of independent NE trajectories in a FS-DAM job.

By default, ORAC uses a fixed (static) number of OpenMP threads, nthr, for all asynchronous force
computations. This number, returned by a standard run time library routine, corresponds to the number
of cores found on the compute node. This is true also when on the same compute node are running more
than one MPI instance related, so that the node gets overloaded with more OpenMP threads than cores.

Compiling the Program 173

In order to tame the loss of parallel efficiency due thread overloading and/or granularity issues produced
by the default behavior, ORAC can handle the disparate granularity of the various force computation in
the nested MTS levels using an end-user controlled dynamic adjustment of the OpenMP threads numbers.
Intramolecular forces, implementation of constraints, step-wise advancement of velocities/coordinates and
computation of non bonded forces in the direct and reciprocal lattice can each be computed with a user
controlled number of threads by switching on dynamic threading. From the end user point of view, dynamic

Figure 11.1: Orac input header for dynamic threading and cache line size control. Cache line size is expressed
in units of 8 bytes words. The ‘‘T’’ following the shebang-like sequence ‘‘#&’’ is optional. When provided, the
program produces detailed timing of the various parallel computations.

threading can be specified by supporting the optional heading reported in the figure 11.1 in the main input
file. In this heading, the shebang-like character sequence ‘‘#&’’ instructs an OpenMP compiled executable
to implement dynamic threading with up to three OpenMP levels: main level, for non bonded forces and
fast Fourier transform of the gridded charge array in PME computation; level-1, for fast forces (improper
torsion and bending) and step-wise advancement in all MTS levels; level-2 for bond constraints, proper
torsion and direct lattice Ewald intramolecular corrections. In the same heading, the user can also control
the cache-line size to be used in the various previously defined OpenMP levels. Cache line size control in
OpenMP applications is essential in minimizing the impact of cache misses due to “false-sharing”. The
latter may occur in the reduction operation of the force arrays involved in particle decomposition parallel
algorithm, when threads on different processors modify variables that reside on the same cache line, thus
invalidating the cache line for all processors (cache misses) and hurting the parallel performances. Cache
misses clearly depends on the length of the cache line that is architecture dependent. Common cache line
sizes are 32, 64 and 128 bytes. To keep up with the rapidly evolving multicore architectures, in the compact
main input heading reported in Figure 11.1, ORAC provides the possibility of specifying the actual cache
line size on the underlying compute node, thus guaranteeing cache coherence of force reduction operations.
The OpenMP optional heading is interpreted as a simple comment by executables that were compiled for
serial execution, thus preserving the retro-compatibility of the input file for the non OpenMP past releases.

When launched in an MPI environment, ORAC creates in the directory from which it was launched,
nprocs PARXXXX new directories where the main input file is copied and all output of the replicas are
written. N.B.: existing PARXXXX directory are overwritten when launching the code a second time. This
can be avoided by changing the “PAR” to a user-defined string in the main input file by specifying:

#!&string

... #input follows

The only two files that need to be in the directory from which ORAC is launched are the main input and the
REM.set file (only if the a REM simulation is started from scratch and the scaling factors of the replicas
are assigned manually and not automatically (see SETUP(&REM)).

11.2 How to set dimensions in ORAC : The config.h file

Being written mostly in fortran77 language, the ORAC program does not dynamically allocate the required
memory. Memory allocation is done statically and dimensions throughout the code are given in a single

Compiling the Program 174

file named config.h. To adapt the size of the program to other problems the config.h file need to be
changed and the program recompiled. In the current distribution an ancillary awk script that builds the
config.h file has been provided. This script is called configure and can be found in the tests directory.
configure parses a general input file for ORAC and produces, to the standard output, the corresponding
config.h file.

A certain number of ORAC routines contains INCLUDE statements. The corresponding include files,
which may contain PARAMETER, COMMON and general dimension statements (REAL, INTEGER etc.), have by
convention a .h suffix and are generated by the standard preprocessor (/lib/cpp) from .inc files and the
config.h file. The .inc files are templates of include files. where constants are initialized to character
symbols (some are listed below). When making the executable, these character symbols are replaced by
the standard preprocessor with their numeric values assigned in the config.h file.

The meaning of most of the character symbols contained in the config.h is explained in the file itself.
Here, it is worth mentioning a few:

� PRESSURE

The statement #define PRESSURE is found in the distribution config.h file. It implies that the
single time step non–bonded force routines will be generated including the pressure computation
section. Since force routines not including the pressure calculation are faster of about 10-20 %, it
might be useful in simulation at constant volume to replace the statement with:
#undef PRESSURE

With the current version of ORAC , after this change all the *.CPP.f files must be removed by hand
and the program recompiled.

� SIT SOLU

This is the maximum number of atoms in the system (it includes the solvent and solute atoms. The
highly misleading name is due to historical reasons.

� TYP SOLU

This is the maximum number of possible different units type as coded in the topology database.

� NRES

This is the maximum number of possible units in the solute (i.e. the number of entries in the JOIN

structured command).

� TGROUP

This is the maximum number of groups in the system.

� LMAX MMAX NMAX .
These parameters controls the dimension of the sine/cosine work in the standard Ewald Method.
In the config.h provided in the ORAC distribution archive, written for SPME simulations, these
parameters are all defined to be 1

� NAT WW NAT WP NAT PP .
These parameters control the neighbor list dimensions. E.g. the three neighbor lists for the

solvent (since a maximum of three shell for r-RESPA are allowed) are integer arrays of dimensions
NAT WW × MOL SOLV .

� FFT1 FFT2 FFT2 MORD

These parameters control the dimensions of the Q charge array and of the M polynomials for PME
computation (see section 4.1)

The total size of the code depends on the number of particles in the system and on the kind of calculation
to be carried out. To give an idea, an 8000 atoms system, running with PME, linked cell and computing
e.g. the VACF, requires about 25 Mb of memory. The equilibration of the solvated reaction center (33000
atoms) requires around 85 Mb.

Index

alpha-carbon, 119
acc, 169
acceptance ratio, 89, 90, 123
ADD BEND, 89
ADD BOND, 89
ADD STR BENDS, 101
ADD STR COM, 102
ADD STR BONDS, 100
ADD STR TORS, 103
ADD TORS, 89
adding a bending, 101
adding a COM-COM stretching, 102
adding a harmonic distance constraint, 100
adding an harmonic torsion, 103
ADD TPG SOLUTE, 93
ADD UNITS, 156
ADJUST BONDS, 104
AGBNP, 147
Alchemical transformations, 67, 106, 113

definition of the alchemical portion of the solute,
106

printout of the work done, 84
mass scaling, 130

alkanes, 16
AMBER force field, 33
&ANALYSIS, 79
ANDERSEN, 144
Andersen, H.C., 144
angular cutoff, 117
angular cutoff, 117
animation

using ORAC generated file, 83
animation from xyz file, 115
ANNEALING, 144
UPDATE, 79
ASCII, 80
DCD, 81
asymmetric unit, 155
atom record, 82
atomic charges

subtracting excess charge, 153
atomic scaling, 23

Liouvillean split for, 26
atoms, 166
AUTO DIHEDRAL, 104
average, 116

averaged, 118

B-spline interpolation, 35
backbone, 119

writing the coordinates of [] atoms, 83
backbone, 169
barostat, 20
BATTERIES

replica exchange method, 122
bending

printing out, 95
BENDING, 105
bending potential, 31, 127
BENDINGS, 160
Bennett acceptance ratio, 47, 65
Berendsen H., 24
Berne B. J, 5
BOND, 161
bonded potential, 30

subdivision of, 30
bonds, 167
BPTI, 28
B-spline

of the direct lattice potential, 107
BUSSI, 144
Bussi, G., 144

canonical transformations, 9
CELL, 156
center of mass, 134
CG, 147
CHANGE CELL, 133
CHECK COORD OFF, 105
Ciccotti G., 24
cofm, 150
COM-COM added bond , 102
compiling ORAC , 171
compute accessibility, 120
compute contac solute, 120
compute neighbors, 120
compute volume, 120
config.h, 173
config.h file, 174
configure file, 174
conjugate gradient, 147, 150
constant pressure

scaling, 148

175

176

constant pressure simulation, 19, 146
constant temperature simulation, 19, 150
CONSTRAINT, 105
constraints, 104, 105

printing out, 95
with r–RESPA, 15

CONTROL, 127
coordinates

of the solvent, 156, 158
COORDINATES, 152, 157
Crooks theorem, 61
CRYSTAL, 133
crystal structure, 134
crystal symmetry, 154
crystal to orthogonal matrix, 135
crystallographic parameters, 133
cutoff, 5, 34, 37, 107

for hydrogen bonds, 117
in the reciprocal lattice, 40
reciprocal lattice, 107

CUTOFF, 106
cutoff, 116, 120

DCD
generating a file, 81

DEBUG, 127
decaalanine, 7
defaults, 150
DEF FRAGMENT, 115
DEFINE ALCHEMICAL ATOM, 106
DEF SOLUTE, 153
density of states, 33
dielectric constant, 5, 40, 118
diffusion, 119
diffusion coefficient, 115
dihed, 168
dihedral angle, 32
dihedral angle in torsions, 164
dimensions

changing the, in ORAC , 173
dipole, 115
Direct lattice Coulomb potential

Soft-core variant for alchemical transformations,
68, 112

direct lattice potential, 34
direct potential

subdivision of, 37
dirty, 87
discrete time propagator, 11, 13, 38
DIST FRAGMENT, 115
dist max, 147
dived step, 120
don, 170
driven thermal changes, 84, 130
driving external potential, 100

DUMP, 81
dumping the restart file, 84
DYNAMIC, 81
dynamical matrix, 146

eigenvectors, 146
electrostatic correction, 107
electrostatic corrections, 38
electrostatic potential, 35

subdivision of, 37
energy equipartition, 150
energy then die, 87
enhanced sampling, 6
equations of motion, 9

for Parrinello-Rahman-Nosé Hamiltonian, 20
equilibration, 132
ERF CORR, 107
ERFC SPLINE, 107
error function, 34, 107
EWALD, 108
Ewald method, 6, 34

electrostatic corrections, 38
in multiple time scales integrators, 86
intramolecular correction, 107
intramolecular self term, 34
self energy, 39
setting work array dimensions, 174
smooth particle mesh, 35

excess charge, 153
extended Lagrangian, 19

Fast switching Double Annihilation method, 76
FIX FREE ENERGY(&SGE), 138
fluctuation theorem, 61
force breakup, 14
force field, 30, 160

input parameters from ASCII file, 96
input parameters from tpgprm file , 96

force field printout, 81
FORCE FIELD, 116
fractional translations, 154
fragment

writing coordinates of, 83
free energy, 6
FREQUENCIES, 146
FS-DAM, 76
fudge factor, 110

generalized Born solvent model, 147
GENERATE, 157
glycine, 98
GOFR, 116
group scaling, 22, 23, 27, 148

Liouvillean split for, 26
GROUP CUTOFF, 108

177

Hamilton
equations, 9, 11

harmonic constraints, 100, 101
on the center of mass, 102

harmonic frequencies, 146
HBONDS, 117
heavy atoms, 120
Hermitian operator, 12
histogram , 117
history file, 81, 82, 85, 115

auxiliary file, 82
H-MASS, 109
hydrogen bond, 117, 169

acceptor and donor, 170

imphd, 168
implicit solvent, 147
improper torsion, 32, 95, 128, 168

definition of, in the parameter file, 164
&INOUT, 80
INSERT, 158
inst xrms, 119
&INTEGRATOR, 86
integrator

reversible, 12
symplectic, 8, 11

interchange matrix, 154
ISEED, 145
isokinetic scaling, 130
ISOSTRESS, 145, 146
isothermal-isobaric ensemble, 18
I-TORSION, 109

jacobian, 10
Jarzynski identity, 63
JOIN, 94
JORGENSEN, 109

KEEP BONDS, 110
k-ewald, 86

leap frog algorithm, 12
Legendre transformation, 21
Lennard-Jones, 15, 162

Soft-core variant for alchemical transformations,
68, 112

cutoff, 37
parameters, 162

linked cell, 110, 113
LINKED CELL, 110
Liouville

formalism, 11
Liouvillean, 5, 13, 38

split of Parrinello-Rahman-Nosé, 25
liquid water, 40
LJ-FUDGE, 110

Lucy’s functions, 59
lysozyme, 94

Markovian process, 61
Martyna G, 5
mass

isokinetic scaling, 129
of the Nosé thermostat, 150
specifying the type atomic, 162

maximum likelihood, 65
MAXRUN, 128
MBAR, 47
MDSIM, 148
mean square displacement, 119
membrane

simulation at constant pressure in the NPT en-
semble, 146

memory demand in ORAC, 173
Message Passing library interface, 172
&META, 89
metadynamics, 7, 57, 89

Gaussian and Lucy’s function, 59
multiple walkers, 7
well-tempered metadynamics, 60

minimization
with dielectric continuum, 147

MINIMIZE, 147
mixing rules, 161
molecular scaling, 27, 28, 148

Liouvillean split for, 26
MPI, 172
MTS RESPA, 86
multiple Bennett acceptance ratio, 47
multiple restarts in parallel simulation, 84
multiple time steps, 5, 29

for Parrinello-Rahman-Nosé Hamiltonian, 20

neighbor list, 110, 113
for hydrogen bonds, 117
setting work arrays dimensions, 174

non bonded potential
subdivision of, 37

non–bonded potential, 30
Nosé thermostat, 20, 150
no step, 147
NPT ensemble, 19, 150
NPT simulation, 146
NVT ensemble, 19, 28, 84, 150

occupy, 82
omit angles, 167
OpenMP, 172

pair correlation function, 116
PAR prefix

changing the, 125

178

parallel job
Launching multiple independent simulations, 122

parallel version
compiling, 173
REM algorithm, 125
steered molecular dynamics simulations, 101

&PARAMETERS, 93
Parrinello-Rahman-Nosé Extended Lagrangian, 19,

148
PARXXXX directories, 125, 138, 173
PDB, 134, 135

generating a file, 80
writing the [] file to disk, 83

PLOT, 83
PLOT FRAGMENT, 115
PMF, 61
position Verlet, 12
potential

bending, 31
bonded, 30
non–bonded, 30
of mean force, 61
stretching, 30
subdivision of, 12

&POTENTIAL, 100
potential of mean force

determination of via the Crooks theorem, 64
potential subdivision, 30, 38

for the AMBER force field, 33, 38
pressure

control for membrane simulation, 146
simulation with isotropic and anisotropic stress

tensor, 19, 146
PRESSURE

parameter in the config.h file, 174
primaDORAC, 97
PRINT ENERGY

replica exchange method, 123
PRINT, 128

replica exchange method, 123
print

for harmonic calculations, 147
print, 117
PRINT DIAGNOSTIC

replica exchange method, 123
PRINT DIPOLE, 118
print histo, 117
printing the force field parameters, 81, 127
printing topology information, 127
PRINT ACCEPTANCE RATIO(&SGE), 139
PRINT WHAM(&SGE), 139
PRINT TOPOLOGY, 95
propagator, 11

discrete time, 11
stepwise, 11

proper torsion, 31, 95, 128
definition of, in the parameter file, 163
frequency range, 33

&PROPERTIES, 115
PROPERTY, 129
protein

printing out the sequence, 95
giving the input sequence in ORAC , 94

p test, 87

QQ-FUDGE, 111

r–RESPA, 15
energy conservation, 16
for NPT ensemble, 25
input examples, 87
performances, 16
use in ORAC, 86
with Parrinello-Rahman-Nosé Hamiltonian, 20

radial cutoff, 117
radial distribution function, 115
RATE, 90
RATTLE, 15
reaction coordinate, 7, 61
reaction field, 5
READ, 90
READ CO, 135
reading the restart file, 84, 127
READ PDB, 134
READ PRM ASCII, 96
READ SOLVENT, 158
READ TPG ASCII, 97
READ TPGPRM, 96
reciprocal lattice, 37
reciprocal lattice potential, 34
REDEFINE, 158
reference system, 12, 37
REJECT, 129
&REM, 122
REM DIAGNOSTIC, 123
replica exchange method, 40, 49, 122–124

Hamiltonian REM, 44
local scaling and global scaling, 125
temperature REM, 42

REPLICATE, 134
REPL RESIDUE, 97
RESET CM, 134
RESIDUE, 165
residue, 97, 165

definition of, in the tpg file, 165
sequence, 94

residue, 117
residue sequence, 127
RESTART, 84, 127
restart file, 84, 127, 133

parallel simulation, 84

179

restricted canonical transformation, 9
reversible integrator, 12
rigid, 166
root mean square displacement, 117, 118, 137, 153
&RUN, 127
Ryckaert J.-P., 24

SAVE, 91
SAVE ALL FILES, 84, 125
saving coordinates to disk, 82
SCALE, 148
SCALING, 148
SCALE CHARGES, 153
SCALE MASS, 129
scaling

equivalence of atomic and group, 23
SD, 147
SEGMENT, 124
SEGMENT(&SGE), 139
SELECT DIHEDRAL, 111
Serial Generalized Ensemble simulations, 49

BAR-SGE method, 52, 54, 56
General theory, 50
Input of (see also &SGE), 138
Simulated tempering, 51
Simulations in collective coordinate space, 52

SETUP(&REM)

replica exchange method, 124
&SETUP, 133
SETUP(&SGE), 140
&SGE, 138

FIX FREE ENERGY, 138
PRINT ACCEPTANCE RATIO, 139
PRINT WHAM, 139
SEGMENT, 139
SETUP, 140
STEP, 142
TRANSITION SCHEME, 142
ZERO FREE ENERGY, 143
Description of the method (see also Serial Gen-

eralized Ensemble simulations), 138
SHAKE, 5, 15, 105
Shifted potential

soft-core alternative in alchemical transforma-
tions, 112

SHIFT-POT, 112
Simulated tempering (see also Serial Generalized En-

semble simulations), 49
&SIMULATION, 144
simulation box, 133
smooth particle mesh Ewald (see also SPME), 35
Soft-core Lennard-Jones potential, 68
SOFT-CORE, 112
solute

defining a fragment of, 115

input examples, 135
input topology from ASCII file, 97
input topology from tpgprm file, 96
inserting in solvent, 158
pair correlation function, 116
setting up the unit cell, 152
topology, 133
total charge, 153

SOLUTE, 135
&SOLUTE, 152
solute

thermostatting solute atoms, 150
solvent

thermostatting solvent atoms, 150
solute tempering, 124
SOLVENT, 135
solvent

generating the coordinates, 152, 157, 158
input examples, 135
reading the coordinates of, 156, 158
setting up the unit cell, 157

&SOLVENT, 156
space group, 134, 152, 154
SPACE GROUP, 154
spherical cutoff, 37
SPME, 6, 33, 35, 108

accuracy, 36
B-spline interpolation, 35
in multiple time scales integrators, 86
memory demand, 36
performances, 36
setting work arrays dimensions., 174

START, 79
STOP, 79
steepest descent, 147
STEER, 130
steered molecular dynamics, 8, 61

adding a time dependent bending, 101, 102
adding a time dependent stretching, 100
adding a time dependent torsion, 103
along a curvilinear coordinate, 112
printing out the work, 84
restart, 130
thermal changes, 84

STEER PATH, 112
step, 86
STEP(&REM), 125
STEP(&SGE), 142
s test, 87
STRESS, 149
stress tensor, 19, 146
stretching, 161

printing out, 95
STRETCHING

for the solute, 113

180

stretching potential, 30, 127
structure factor, 35, 115, 116, 119
structured commands

definition of, 77
STRUCTURES, 118
VORONOI, 120
symplectic

building integrators, 11
condition, 12
condition for canonical transformations, 10
integrators, 8
notation of the equations of motion, 9

TEMPERATURE, 149
temperature scaling

with Nosé thermostats, 150
TEMPERED, 91
TEMPLATE, 136
termatom, 169
test-times, 87
thermal changes, 130
thermal work, 130
thermalization, 132
THERMOS, 150
thermostat, 20, 150

Andersen, 144
Bussi, 145
Nosé-Hoover, 150

TIME, 132
time dependent bending, 101, 102
time dependent stretching, 100
time dependent torsion, 103
TIME CORRELATIONS, 119
TIMESTEP, 88
topology, 97, 160, 164

adding extra topology, 93
from ASCII file, 97
from tpgprm file, 96
printing, 95

torsion
definition of dihedral angle, 164
improper, 168
TORSION IMPROPER, 164
printing out, 95
proper, 163

torsional potential, 16, 31, 127
TORSION IMPROPER, 163
TORSION PROPER, 163
total, 117
TRAJECTORY, 85
trajectory file, 79, 81, 82, 115

auxiliary file, 82
TRANSITION SCHEME(&SGE), 142
Trotter formula, 11
Tuckerman M., 5

unit cell, 152, 157
replicating along selected directions, 134, 152,

157
unitary transformation, 12
UPDATE, 113
use neighbor, 116
use neighbors

for hydrogen bonds, 117

vacf, 120
valine, 165
velocity

rescaling, 148
velocity autocorrelation function, 115, 119
velocity Verlet, 12
Verlet

neighbor list, 114
VERLET LIST, 114
very cold start, 87
virtual variables, 21
Volume calculation, 120
Voronoi, 28
Voronoi Polihedra, 120

Wang-Landau algorithm, 57
water, 28

properties of, 40
work

in a SMD simulation, 84
in alchemical transformation, 72

write, 82
WRITE GRADIENT, 147
WRITE GYR, 121
WRITE PRESSURE, 151
WRITE TPGPRM BIN, 98
WTEMPERED, 91

Xmol animation, 115
X RMS, 153
xyz format, 83

ZERO FREE ENERGY(&SGE), 143

Bibliography

[1] Robert B. Sandberg, Martina Banchelli, Carlo Guardiani, Stefano Menichetti, Gabriella Caminati,
and Piero Procacci. Efficient nonequilibrium method for binding free energy calculations in molecular
dynamics simulations. Journal of Chemical Theory and Computation, 11(2):423–435, 2015.

[2] P. Procacci, T. Darden, E. Paci, and M. Marchi. J. Comput. Chem., 18:1848, 1997.

[3] S. J. Wiener, P. A. Kollmann, D. T. Nguyen, and D. A. Case. J. Comput. Chem., 7:230, 1986.

[4] W. D. Cornell, P. Cieplak, C. I. Bavly, I. R. Gould, K. M. Merz Jr., D. M. Ferguson, D. C. Spellmeyer,
T. Fox, J. W. Caldwell, and P. Kollmann. J. Am. Chem. Soc., 117:5179, 1995.

[5] B. R. Brooks, R. E. Bruccoeri, B. D. Olafson, D.J. States, S. Swaminanthan, and M. Karplus. J.
Comput. Chem., 4:187, 1983.

[6] W.F. van Gunsteren and H. J. C. Berendsen. Groningen Molecular Simulation (GROMOS) Library
Manual. Biomos, Groningen, 1987.

[7] A. D. MacKerrel, J. Wirkeiwicz-Kuczera, and M. Karplus. J. Am. Chem. Soc, 117:11946, 1995.

[8] J. J. Pavelites, P. A. Gao, and A. D. MacKerrel. Biophysical J., 18:221, 1997.

[9] A. D. MacKerell Jr., D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer,
J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos,
S. Michnick T., Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher III, B. Roux, M. Schlenkrich, J. C.
Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus. J. Phys.
Chem. B, 102:3586, 1998.

[10] J. P. Ryckaert, G. Ciccotti, and H. J. C Berendsen. J. Comput. Phys., 23:327, 1977.

[11] G. Ciccotti and J. P. Ryckaert. Comp. Phys. Report, 4:345, 1986.

[12] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, Walton
Street, Oxford OX2 6DP, 1989.

[13] P. Procacci, T. Darden, and M. Marchi. J. Phys. Chem, 100:10464, 1996.

[14] W. B. Street, D.J. Tildesley, and G. Saville. Mol. Phys., 35:639, 1978.

[15] O. Teleman and B. Joensonn. J. Comput. Chem., 7:58, 1986.

[16] M. E. Tuckerman, G. J. Martyna, and B. J. Berne. J. Chem. Phys., 94:6811, 1991.

[17] M. E. Tuckerman and B. J. Berne. J. Chem. Phys., 95:8362, 1991.

[18] M. E. Tuckerman, B. J. Berne, and A. Rossi. J. Chem. Phys., 94:1465, 1990.

[19] H. Grubmuller, H. Heller, A. Winemuth, and K. Schulten. Mol. Simul., 6:121, 1991.

[20] M. E. Tuckerman, B.J. Berne, and G.J. Martyna. J. Chem. Phys., 97:1990, 1992.

[21] M. E. Tuckerman, B. J. Berne, and G. J. Martyna. J. Chem. Phys., 99:2278, 1993.

181

182

[22] D. D. Humphreys, R. A. Friesner, and B. J. Berne. J. Phys. Chem., 98:6885, 1994.

[23] P. Procacci and B. J. Berne. J. Chem. Phys., 101:2421, 1994.

[24] P. Procacci and M. Marchi. J. Chem. Phys., 104:3003, 1996.

[25] G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein. Mol. Phys., 87:1117, 1996.

[26] P. Procacci and B. J. Berne. Mol. Phys., 83:255, 1994.

[27] M. Marchi and P. Procacci. J. Chem. Phys., 109:5194, 1998.

[28] M. Saito. J. Chem. Phys., 101:4055, 1994.

[29] H. Lee, T. A. Darden, and L. G. Pedersen. J. Chem. Phys., 102:3830, 1995.

[30] J. A. Barker and R. O. Watts. Mol. Phys., 26:789, 1973.

[31] J. A. Barker. The problem of long-range forces in the computer simulation of condensed matter.
volume 9, page 45. NRCC Workshop Proceedings, 1980.

[32] P. Ewald. Ann. Phys., 64:253, 1921.

[33] S.W. deLeeuw, J. W. Perram, and E. R. Smith. Proc. R. Soc. London A, 373:27, 1980.

[34] T. Darden, D. York, and L. Pedersen. J. Chem. Phys., 98:10089, 1993.

[35] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen. J. Chem. Phys.,
101:8577, 1995.

[36] R. W. Hockney. Computer Simulation Using Particles. McGraw-Hill, New York, 1989.

[37] H.G. Petersen, D. Soelvanson, and J. W. Perram. J. Chem. Phys, 101:8870, 1994.

[38] L. Greengard and V. Rokhlin. J. Comput. Phys., 73:325, 1987.

[39] J. Shimada, H. Kaneko, and T. Takada. J. Comput. Chem., 15:28, 1994.

[40] R. Zhou and B. J. Berne. J. Chem. Phys., 103:9444, 1996.

[41] Y. Duan and P. A. Kollman. Pathways to a protein folding intermediate observed in a 1-microsecond
simulation in aqueous solution. Science, 282:740–744, 1998.

[42] R. H. Swendsen and J. S. Wang. Phys. Rev. Lett., 57:2607, 1986.

[43] C. G. Geyer. in Computing Science and Statistics, Proceedings of the 23rd Symposium on the Inter-
face, edited by E. M. Keramidis, page 156, 1991.

[44] E. Marinari and G. Parisi. Europhys. Lett., 19:451, 1992.

[45] K. Hukushima and K. Nemoto. J. Phys. Soc. Jpn., 65:1604, 1996.

[46] Y. Okamoto. J. Mol. Graphics Modell., 22:425, 2004.

[47] A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov, and P. N. Vorontsov-Velyaminov. J. Chem.
Phys., 96:1776, 1992.

[48] S. Rauscher, C. Neale, and R. Pomès. J. Chem. Theory Comput., 5:2640, 2009.

[49] S. Park. Phys. Rev. E, 77:016709, 2008.

[50] C. Zhang and J. Ma. J. Chem. Phys., 129:134112, 2008.

[51] J. G. Kirkwood. J. Chem. Phys., 3:300, 1935.

[52] D. A. McQuarrie. Statistical Mechanics. HarperCollinsPublishers, New York, USA, 1976.

183

[53] S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M. Rosenberg. J. Comput. Chem.,
13:1011, 1992.

[54] A. M. Ferrenberg and R. H. Swendsen. Phys. Rev. Lett., 63:1195, 1989.

[55] C. J. Woods, J. W. Essex, and M. A. King. J. Phys. Chem. B, 107:13703, 2003.

[56] R. Chelli. J. Chem. Theory. Comput., 6:1935, 2010.

[57] G. M. Torrie and J. P. Valleau. Chem. Phys. Lett., 28:578–581, 1974.

[58] A. Laio and M. Parrinello. Escaping free-energy minima. Proc. Natl. Acad. Sci. USA, 99:12562–12566,
2002.

[59] S. Marsili, A. Barducci, R. Chelli, P. Proccaci, and V. Schettino. J. Phys. Chem. B, 110:14011–14014,
2006.

[60] F. Wang and D. P. Landau. Phys. Rev. Lett., 86:2050–2053, 2001.

[61] J. Henin and C. Chipot. J. Chem. Phys., 121:2904–2914, 2004.

[62] A. Laio, A. Rodriguez-Fortea, F. L. Gervasio, M. Ceccarelli, and M. Parrinello. Assessing the accuracy
of metadynamics. J. Phys. Chem. B, 109:6714–6721, 2005.

[63] C. Jarzynski. Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 78:2690–2693,
1997.

[64] G. E. Crooks. J. Stat. Phys., 90:1481–1487, 1998.

[65] G. Hummer and A. Szabo. Proc. Natl. Acad. Sci. USA, 98:3658–3661, 2001.

[66] M. R. Shirts, E. Bair, G. Hooker, and V. S. Pande. Phys. Rev. Lett., 91:140601, 2003.

[67] D. Chandler. Introduction to Modern Statistical Mechanics. Oxford University Press, 1987.

[68] J. M. Sanz-Serna. Acta Numerica, 1:243, 1992.

[69] S. K. Grey, D. W. Noid, and B. G. Sumpter. J. Chem. Phys., 101:4062, 1994.

[70] J. J. Biesiadecki and R. D. Skeel. J. Comp. Physics., 109:318, 1993.

[71] P. J. Channel and C. Scovel. Nonlinearity, 3:231, 1990.

[72] H. Goldstein. Classical Mechanics. Addison-Wesley, Reading MA, 1980.

[73] V. I. Arnold. Mathematical Methods of Classical Mechanics. Springer-Verlach, Berlin, 1989.

[74] H. F. Trotter. Proc. Am. Math Soc., 10:545, 1959.

[75] H. de Raedt and B. De Raedt. Phys. Rev. A, 28:3575, 1983.

[76] H. Yoshida. Phys. Letters A, 150:262, 1990.

[77] S. J. Toxvaerd. J. Chem. Phys., 87:6140, 1987.

[78] H.C Andersen. J. Comput. Phys., 52:24, 1983.

[79] M. E. Tuckerman and M. Parrinello. J. Chem. Phys., 101:1302, 1994.

[80] S. Nose and M. L. Klein. Mol. Phys., 50:1055, 1983.

[81] G. Herzberg. Spectra of Diatomic Molecules. Van Nostrand, New York, 1950.

[82] M. Watanabe and M. Karplus. J. Phys. Chem., 99:5680, 1995.

[83] J. K. Kjems an G. Dolling. Phys. Rev. B, 11:16397, 1975.

184

[84] F. D. Medina and W. B. Daniels. J. Chem. Phys., 64:150, 1976.

[85] G. Cardini and V. Schettino. Chem. Phys., 146:147, 1990.

[86] D. Frenkel and B. Smit. Understanding Molecular Simulations. Academic Press, San Diego, 1996.

[87] D. C. Rapaport. The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge
(UK), 1995.

[88] S. Nosé. In M. Meyer and V. Pontikis, editors, Computer Simulation in Materials Science, page 21.
Kluwer Academic Publishers, 1991.

[89] S. Nosé. Prog. Theor. Phys. Supp., 103:1, 1991.

[90] M. Ferrario. In M.P.Allen and D.J.Tildesley, editors, Computer Simulation in Chemical Physics,
page 153. Kluwer Academic Publishers, 1993.

[91] G. J. Martyna, D. J. Tobias, and M. L. Klein. J. Chem. Phys., 101:4177, 1994.

[92] H. C. Andersen. J. Chem. Phys., 72:2384, 1980.

[93] M. Parrinello and A. Rahman. Phys. Rev. Letters, 45:1196, 1980.

[94] S. Nose. Mol. Phys., 52:255, 1984.

[95] M. Ferrario and J.-P. Ryckaert. Mol. Phys., 78:7368, 1985.

[96] M. E. Tuckerman, C. J. Mundy, and M. L. Klein. Phys. Rev. Letters, 78:2042, 1997.

[97] S. Melchionna, G. Ciccotti, and B. L. Holian. Mol. Phys., 78:533, 1993.

[98] H.J.C.Berendsen. Lectures notes unpublished; reported by G. Ciccotti and J.P. Ryckaert, Comp.
Physics Report 4 (1986) 345, 1986.

[99] E. Paci and M. Marchi. J. Phys. Chem., 104:3003, 1996.

[100] S. Toxvaerd. Phys. Rev. B., 47:343, 1993.

[101] J.-P. Hansen. Molecular-dynamics simulation of coulomb systems in two and three dimensions. In
Molecular Dynamics Simulation of Statistical-Mechanics Systems, Proceedings of the International
School of Physics ”Enrico Fermi”. North Holland Physics, 1986.

[102] H.G. Petersen. J. Chem. Phys., 103:3668, 1995.

[103] S. J. Stuart, R. Zhou, and B. J. Berne. J. Chem. Phys., 105:1426, 1996.

[104] P. Procacci, M. Marchi, and G. J. Martyna. J. Chem. Phys., 108:8799, 1998.

[105] A. Rahman and F. H. Stillinger. J. Chem. Phys., 55:3336, 1971.

[106] P. Liu, B. Kim., R. A. Friesner, and B. J. Berne. Proc. Acad. Sci., 102:13749–13754, 2005.

[107] M. R. Shirts and J. D. Chodera. J. Chem. Phys., 129:124105, 2008.

[108] U. H. E. Hansmann and Y. Okamoto. J. Comput. Chem., 18:920, 1997.

[109] A. Irbäck and F. Potthast. J. Chem. Phys., 103:10298, 1995.

[110] A. Mitsutake and Y. Okamoto. Chem. Phys. Lett., 332:131, 2000.

[111] S. Park and V. S. Pande. Phys. Rev. E, 76:016703, 2007.

[112] X. Huang, G. R. Bowman, and V. S. Pande. J. Chem. Phys., 128:205106, 2008.

[113] C. Zhang and J. Ma. Phys. Rev. E, 76:036708, 2007.

185

[114] R. Denschlag, M. Lingenheil, P. Tavan, and G. Mathias. J. Chem. Theory Comput., 5:2847, 2009.

[115] S. Park, D. L. Ensign, and V. S. Pande. Phys. Rev. E, 74:066703, 2006.

[116] R. Chelli, S. Marsili, A. Barducci, and P. Procacci. Phys. Rev. E, 75:050101, 2007.

[117] R. Chelli. J. Chem. Phys., 130:054102, 2009.

[118] C. H. Bennett. J. Comp. Phys., 22:245, 1976.

[119] R. W. Zwanzig. J. Chem. Phys., 22:1420, 1954.

[120] A. Mitsutake and Y. Okamoto. J. Chem. Phys., 130:214105, 2009.

[121] W. G. Hoover. Phys. Rev. A, 31:1695, 1985.

[122] W. G. Hoover. Phys. Rev. A, 34:2499, 1986.

[123] G.L. Martyna, M.L. Klein, and M. E. Tuckerman. J. Chem. Phys., 97:2635, 1992.

[124] Y. Sugita and Y. Okamoto. Chem. Phys. Lett., 314:141, 1999.

[125] D. D. Minh and A. B. Adib. Phys. Rev. Lett., 100:180602, 2008.

[126] P. Nicolini, P. Procacci, and R. Chelli. J. Phys. Chem. B, 114:9546, 2010.

[127] S. R. Williams, D. J. Searles, and D. J. Evans. Phys. Rev. Lett., 100:250601, 2008.

[128] J. Gore, F. Ritort, and C. Bustamante. Proc. Natl. Acad. Sci. USA, 100:12564, 2003.

[129] G. Cowan. Statistical data analysis. Oxford University Press, 1998.

[130] M. Mezei. J. Comput. Phys., 68:237, 1987.

[131] G. H. Paine and H. A. Scheraga. Biopolymers, 24:1391, 1985.

[132] T. Huber, A. E. Torda, and W. F. van Gunsteren. J. Comput.-Aided Mol. Des., 8:695, 1994.

[133] S. Marsili, A. Barducci, R. Chelli, P. Procacci, and V. Schettino. J. Phys. Chem. B, 110:14011, 2006.

[134] M. Watanabe and W. P. Reinhardt. Phys. Rev. Lett, 65:3301, 1990.

[135] N. G. Van Kampen. Stochastic Processes in Physics and Chemistry. North-Holland, 1992.

[136] M. Iannuzzi, A. Laio, and M. Parrinello. Phys. Rev. Lett., 90:238302, 2003.

[137] V. Babin, C. Roland, T. A. Darden, and C. Sagui. J. Chem. Phys., 125:204909, 2006.

[138] L. B. Lucy. Astronom. J., 82:1013, 1977.

[139] W. G. Hoover. and C. G. Hoover. Phys. Rev. E, 73:016702, 2006.

[140] D. J. Earl and M. W. Deem. J. Phys. Chem. B, 109:6701, 2005.

[141] C. Zhou and R. N. Bhatt. Phys. Rev. E, 72:0205701(R), 2005.

[142] R. E. Belardinelli and V. D. Pereira. Phys. Rev. E, 75:046701, 2007.

[143] A. Barducci, G. Bussi, and M. Parrinello. Phys. Rev. Lett., 100:020603, 2008.

[144] P. Raiteri, F. L. Gervasio, C. Micheletti, and M. Parrinello. J. Phys. Chem. B, 110:3533, 2006.

[145] B. Isralewitz, M. Gao, and K. Schulten. Curr. Op. Struct. Biol., 11:224–230, 2001.

[146] D. J. Evans and D. J. Searls. Phys. Rev. E, 50:1645–1648, 1994.

[147] M. Sprik and G. Ciccotti. J. Chem. Phys., 109:7737–7744, 1998.

186

[148] S. Park and K. Schulten. J. Chem. Phys., 120:5946–5961, 2004.

[149] R. H. Wood and W. C. F. Muehlbauer. J. Phys. Chem., 95:6670–6675, 1991.

[150] R. Chelli and P. Procacci. Phys. Chem. Chem. Phys., 11:1152–1158, 2009.

[151] T.C. Beutler, A.E. Mark, R.C. van Schaik, P.R. Gerber, and W.F. van Gunsteren. Avoiding singu-
larities and numerical instabilities in free energy calculations based on molecular simulations. Chem.
Phys. Lett., 222:5229–539, 1994.

[152] M.R. Shirts and V.S. Pande. Solvation free energies of amino acid side chain analogs for common
molecular mechanics water models. J. Chem. Phys., page 134508, 2005.

[153] M.R. Shirts, J.W. Pitera, W.C. Swope, and V.S. Pande. Extremely precise free energy calculations of
amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins.
J. Chem. Phys., 119:5740–5761, 2003.

[154] In the formulation of Eq. 9.1, we have implicitly assumed the so-called ”tin-foil” boundary conditions:
the Ewald sphere is immersed in a perfectly conducting medium and hence the dipole term on the
surface of the Ewald sphere is zero [S.W. deLeeuw, J. W. Perram, and E. R. Smith. Proc. R. Soc.
London A, 373:27, 1980].

[155] See for example the GROMACS manual and the tutorial for alchemical calculations: Hands-on
tutorial Solvation free energy of ethanol available at http://www.gromacs.org. For NAMD, See the
tutorial: In silico alchemy: A tutorial for alchemical free-energy perturbation calculations with NAMD
available at http://www.ks.uiuc.edu.

[156] P. Procacci, S. Marsili, A. Barducci, G. F. Signorini, and R. Chelli. J. Chem. Phys., 125:164101,
2006.

[157] Lingle Wang, Yujie Wu, Yuqing Deng, Byungchan Kim, Levi Pierce, Goran Krilov, Dmitry Lupyan,
Shaughnessy Robinson, Markus K. Dahlgren, Jeremy Greenwood, Donna L. Romero, Craig Masse,
Jennifer L. Knight, Thomas Steinbrecher, Thijs Beuming, Wolfgang Damm, Ed Harder, Woody
Sherman, Mark Brewer, Ron Wester, Mark Murcko, Leah Frye, Ramy Farid, Teng Lin, David L.
Mobley, William L. Jorgensen, Bruce J. Berne, Richard A. Friesner, and Robert Abel. Accurate
and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a
modern free-energy calculation protocol and force field. Journal of the American Chemical Society,
137(7):2695–2703, 2015.

[158] Piero Procacci. Unbiased free energy estimates in fast nonequilibrium transformations using gaussian
mixtures. The Journal of Chemical Physics, 142(15):154117, 2015.

[159] C. Brot B. Quentrec. J. Comp. Phys, 13:430, 1975.

[160] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, Walton
Street, Oxford OX2 6DP, 1989.

[161] R. M. Levy E. Gallicchio. Agbnp: An analytic implicit solvent model suitable for molecular dynamics
simulations and high-resolution modeling. J. Comput. Chem., 25:479–499, 2004.

[162] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceedings of
the IEEE, 93(2):216–231, 2005. Special issue on “Program Generation, Optimization, and Platform
Adaptation”.

	Atomistic simulations: an introduction
	Multiple time steps integration schemes and electrostatic interactions in complex biomolecular systems
	Enhanced sampling in atomistic simulations

	Symplectic and Reversible Integrators
	Canonical Transformation and Symplectic Conditions
	Liouville Formalism: a Tool for Building Symplectic and Reversible Integrators
	Potential Subdivision and Multiple Time Steps Integrators for NVE Simulations
	Constraints and r–RESPA
	Applications

	Multiple Time Steps Algorithms for the Isothermal-Isobaric Ensemble
	The Parrinello-Rahman-Nosé Extended Lagrangian
	The Parrinello-Rahman-Nosé Hamiltonian and the Equations of Motion
	Equivalence of Atomic and Molecular Pressure
	Liouvillean Split and Multiple Time Step Algorithm for the NPT Ensemble
	Group Scaling and Molecular Scaling
	Switching to Other Ensembles

	Multiple Time Steps Algorithms For Large Size Flexible Systems with Strong Electrostatic Interactions
	Subdivision of the ``Bonded'' Potential
	The smooth particle mesh Ewald method
	Subdivision the Non Bonded Potential
	Electrostatic Corrections for the Multiple Time Step Simulation

	The Hamiltonian Replica Exchange Method
	Temperature REM
	Hamiltonian REM
	Calculating Ensemble Averages Using Configurations from All Ensembles (MBAR estimator)

	Serial generalized ensemble simulations
	Introduction
	Fundamentals of serial generalized-ensemble methods
	SGE simulations in temperature-space (simulated tempering) and its implementation in the ORAC program
	SGE simulations in -space

	The algorithm for optimal weights
	Tackling free energy estimates
	Implementation of adaptive free energy estimates in the ORAC program: the BAR-SGE method
	Free energy evaluation from independent estimates and associated variances

	Metadynamics Simulation: history-dependent algorithms in Non-Boltzmann sampling
	Implementation in ORAC

	Steered Molecular Dynamics
	The Crooks theorem
	Determination of the potential of mean force via bidirectional non equilibrium techniques
	Implementation in ORAC

	Alchemical Transformations
	Production of the MD trajectory with an externally driven alchemical process
	Calculation of the alchemical work
	Fast switching Double Annihilation method

	Input to ORAC
	General Features
	Environments, Commands and Sub-commands
	&ANALYSIS
	&INOUT
	&INTEGRATOR
	&META
	&PARAMETERS
	&POTENTIAL
	&PROPERTIES
	&REM
	&RUN
	&SETUP
	&SGE
	&SIMULATION
	&SOLUTE
	&SOLVENT

	Input to ORAC : Force Field and Topology Files
	Force Field Parameters
	Topology

	Compiling and Running ORAC
	Compiling the Program
	Serial version
	Parallel version

	How to set dimensions in ORAC : The config.h file

