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ABSTRACT: The fast-switching decoupling method is a
powerful nonequilibrium technique to compute absolute
binding free energies of ligand−receptor complexes (Sandberg
et al., J. Chem. Theory Comput. 2014, 11, 423−435). Inspired
by the theory of noncovalent binding association of Gilson and
co-workers (Biophys. J. 1997, 72, 1047−1069), we develop two
approaches, termed binded-domain and single-point alchem-
ical-path schemes (BiD-AP and SiP-AP), based on the
possibility of performing alchemical trajectories during which
the ligand is constrained to fixed positions relative to the
receptor. The BiD-AP scheme exploits a recent generalization
of nonequilibrium work theorems to estimate the free energy
difference between the coupled and uncoupled states of the
ligand−receptor complex. With respect to the fast-switching
decoupling method without constraints, BiD-AP prevents the ligand from leaving the binding site, but still requires an estimate of
the positional binding-site volume, which may not be a simple task. On the other side, the SiP-AP scheme allows avoidance of the
calculation of the binding-site volume by introducing an additional equilibrium simulation of ligand and receptor in the bound
state. In the companion article (DOI: 10.1021/acs.jctc.7b00595), we show that the extra computational effort required by SiP-AP
leads to a significant improvement of accuracy in the free energy estimates.

1. INTRODUCTION

The fundamental role of standard absolute binding free energy
(ABFE) of ligand−receptor complexes in chemistry, biology,
and, especially, in drug discovery has stimulated an intensive
research to design efficient computational strategies for fast and
accurate free energy estimates1−6 and for reliable ligand
screening.7,8 In the framework of molecular dynamics (MD)
simulations, several approaches exploiting biasing potentials or
restrained dynamics have been devised to compute the free
energy difference of distinct configurational states of a system,
in general, and of bound and unbound states of host−guest
assemblies in particular.9−20 An important class of method-
ologies revolves around alchemical transformations,2,21−33

whose efficacy relies on the possibility of splitting the ABFE
calculation of a ligand−receptor complex in two parts, one
based on decoupling21 or annihilation27,34 of the ligand from
the solvent in a simulation of the solvated ligand and the other
on the decoupling of the ligand from its environment in a
simulation of the solvated ligand−receptor complex. Alchemical
transformations can in turn be performed by using
equilibrium21,27,34−36 and nonequilibrium31−33,37 MD simula-

tions. In equilibrium simulations, the intermolecular potential
energy between ligand and environment changes reversibly
through a series of independent simulations, called replicas,
characterized by ligand-environment potential energies differ-
ent to each other. These potential energies are associated with
specific values of a parameter λ, typically ranging in the interval
[0,1], where the extremes correspond to the fully coupled and
uncoupled states of the ligand. Thus, in the ensemble of
replicas, the ligand-environment coupling varies in discrete
steps, according to the values of λ assigned to the various
replicas. The free energy difference between the coupled and
uncoupled state is determined from summing up the free
energy differences estimated for the pairs of neighboring λ
ensembles through thermodynamic integration,38 free energy
perturbation,39 or Bennett acceptance ratio.40,41 The ABFE can
finally be computed as the difference between the free energies
related to the decoupling processes27 of the ligand alone in
solution and of the ligand in the solvated complex, using a
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correction21,42 to account for the reversible work needed to
bring the ligand from the volume of the binding site to the
volume of the standard state. To avoid the dissociation of the
ligand−receptor complex during the simulations carried out at
the various λ values, a restraining potential is usually
employed.9,35,36 Such a potential introduces a spurious
contribution to the ABFE, which can be removed a posteriori
with established relationships.21,35

In fast-switching alchemical transformations,43 the free
energies relative to decoupling processes are computed
according to prescriptions of nonequilibrium work theorems44

applied to MD simulations.1 Initial microstates are sampled at
equilibrium fixing λ = 0 (coupled state). Starting from each
microstate, a set of nonequilibrium alchemical trajectories is
realized by varying λ from 0 to 1 with a fixed time schedule.
During such trajectories, the work performed on the system is
computed, and the set of work values is employed into
nonequilibrium work theorems37 to find the free energy
difference between final (λ = 1) and initial state (λ = 0). The
absence of any artificial device aimed at restraining the ligand
within the binding site of the receptor, makes formally incorrect
the formulation of fast-switching alchemical transformations
presented in ref 43. In spite of this, it has been shown that the
use of restraining potentials can be avoided in the practice
without affecting significantly the ABFE estimates. This relies
on the fact that simulation times adopted in nonequilibrium
alchemical transformations can be, in principle, arbitrary, and
hence short enough to virtually prevent ligand−receptor
dissociation. Although short simulation times are approachable
in several cases without significant loss of accuracy, a check on
each alchemical trajectory should always be performed to verify
that no dissociation has occurred. Otherwise, the final
uncoupled state would not be represented correctly, making
the free energy evaluation wrong. In the free energy calculation,
only the trajectories for which the final configuration of the
complex is still in a bound state can be accepted. This posterior
check makes necessary the use of some criterion to evaluate if
bound configurations are preserved, thus introducing a certain
degree of complexity in the analysis. Another not obvious issue
is how to compute the binding-site volume entering the
standard state correction in the fast-switching decoupling
method.30 Often, approximate estimates are given for the
binding-site volume, based on the mean volume per atom in
condensed phases under standard conditions. Typical free
energy corrections range around, or less than, 1 kcal mol−1.31,45

To tackle the shortcomings discussed above, we supplement
the fast-switching decoupling method30,43 with the possibility of
performing alchemical trajectories during which the ligand is
constrained to a fixed position relative to the receptor. Here,
“position” must be intended as the vector connecting an atom
of the receptor, taken as the origin of the receptor-frame, with
an atom of the ligand, taken as the origin of the ligand-frame.
Two types of approach are presented. The first, called the
binded-domain alchemical-path (BiD-AP) scheme, is based on
a MD simulation protocol that allows an estimation of the free
energy differences between coupled and uncoupled states of the
ligand−receptor complex by means of nonequilibrium MD
simulations, exploiting the configurational-domain transition
method proposed in ref 46. With respect to the fast-switching
decoupling method without constraints,30,43 the present
approach prevents the ligand from leaving the binding site,
but still requires an estimate of the binding-site volume. In the
second alchemical method, called the single-point alchemical-

path (SiP-AP) scheme, a reference configuration of the ligand−
receptor complex is introduced to split the ligand to receptor/
solvent decoupling contribution to the ABFE into two separate
energetical terms, one computed from an equilibrium MD
simulation of the fully coupled bound state of the complex and
the other from fast-switching alchemical simulations of the
complex constrained in the reference configuration. Both
schemes allow computation of the ABFE without resorting to
the calculation of the orientational binding-site volume,
related21 to the change in free energy when the rotationally
constrained ligand is allowed to rotate freely. Furthermore, the
SiP-AP scheme also avoids the calculation of the positional
binding-site volume, which is related to the change in free
energy when the constrained gas-phase ligand is allowed to
expand to occupy the standard volume (1661 Å3). These
rotational and positional contributions to the ABFE do not
simply “disappear” from the calculation, but are accounted for
in an implicit way, through a potential of mean force as a
function of the ligand position (rotational contribution) and
through the integration domain of an integral entering the
probability density as a function of the ligand position
(positional contribution). The two alchemical schemes are
based on a binding descriptor, namely the coordinate devised to
establish when the ligand−receptor complex is in place, which
corresponds to the position of a reference atom of the ligand
relative to a given receptor-frame. In view of applications to
inclusion host−guest systems, such as complexes of β-
cyclodextrin with aromatic compounds,47 BiD-AP and SiP-AP
are also formulated so as to employ the distance between two
generic points of ligand and receptor (atoms or centers of
mass) as binding descriptor.
In ref 47, we illustrate important technical and theoretical

aspects for a good practice in applying BiD-AP and SiP-AP
alchemical schemes through the calculation of ABFEs of a
Zn(II)·anion complex and 1:1 complexes of β-cyclodextrin with
benzene and naphthalene.

2. THERMODYNAMICS OF THE NONCOVALENT
BINDING

BiD-AP and SiP-AP schemes are developed starting from the
theory of noncovalent binding association by Gilson and co-
workers.21 In this section, we review the basic relationships for
the calculation of the standard ABFE through alchemical
transformations, preserving the notation of ref 21 whenever
possible. During the discussion, we will outline some
differences with respect to outcomes of Gilson and co-workers,
especially related to the possible geometries of the ligand. In
section 3.1, we report on our approaches to the alchemical
transformations based on constrained nonequilibrium MD
simulations. In section 4, we describe how the relationships for
alchemical transformations are modified from using the ligand−
receptor distance as binding descriptor.
The reaction in which we are interested is the association of a

ligand L with a receptor R to form a noncovalent complex RL
in solution,

+ ⇄R L RL (1)

At equilibrium, the chemical potentials of L, R, and RL into
solution are equalized, namely

μ μ μ+ =sol,R sol,L sol,RL (2)

The chemical potential of a species i at a given concentration Ci
can be expressed as
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γ
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where μsol,i° is the standard chemical potential, γi is the activity
coefficient, C° is the standard concentration in the same units
as Ci (1 M or 1 molecule/1661 Å3), R is the gas constant, and T
is the absolute temperature. As Gilson and co-workers noted,
μsol,i° is the chemical potential in a hypothetical standard state in
which each species is at standard concentration in the solvent,
but does not interact with other solute molecules. It is worth
noting that, in the infinite dilution limit, the activity coefficients
of the solute species approach unity.48,49 Recasting eqs 2 and 3,
the relation between the standard free energy of binding and
the binding constant K is obtained

μ μ μ

γ
γ γ

Δ ° ≡ ° − ° − °

= −
°

≡ −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

G
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C C
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ln

ln

sol,RL sol,R sol,L

RL

R L

RL

R L

(4)

A relationship to link the ABFE (ΔG°), and hence K, to
statistical thermodynamic quantities has been derived by Hill in
ref 50 and revised by Gilson and co-workers21 to include
explicitly the standard concentration,

μ° = −
°

+ ° ̅
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟RT

V C

Q V

Q V
P Vln

1 ( )

( )N

N N

N N
sol,R

,R

,R ,R

,0 ,0
R

(5)

with analogous expressions for the ligand L and the complex
RL. In the previous equation, QN,R(VN,R) is the canonical
partition function for a solution consisting of N solvent
molecules and one molecule R at volume VN,R, which is the
volume of this solution when it is at equilibrium at the
temperature T and standard pressure P°. Analogously,
QN,0(VN,0) is the canonical partition function of N solvent
molecules alone at the volume VN,0, namely the equilibrium
volume of the pure-solvent sample at T and P° conditions.
Finally, for large values of N, V̅R/NA = VN,R − VN,0 is the volume
change occurring when one molecule R is added to N
molecules of solvent (NA being the Avogadro’s number). It is
worth noting that the term P°V̅R into eq 5 is typically very
small,51 because of small values of V̅R.
We now report on a more detailed expression of the standard

chemical potentials μsol,R° and μsol,L° , by exploiting the
representation of the canonical partition functions in terms of
the classical statistical thermodynamics.52,53 In this framework,
the partition function QN,R(VN,R) can be written as a phase-
space integral separable as the product of an integral over the
positional variables, that is, the atomic coordinates, and two
integrals over the dynamical variables, that is, the conjugate
momenta related to the solute and solvent atoms:

∫

∫ ∫∑ ∑

σ σ

β β
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× − −
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= =
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1

2
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(6)

where β is the inverse temperature, pi
2 is the squared magnitude

of the momentum of the generic atom i, MR is the number of
atoms of R, rR′ and pR denote the atomic coordinates and

conjugate momenta of R, respectively, while rS and pS are the
analogous variables for the NSN solvent atoms (here, NS is the
number of atoms for one solvent molecule). Also, mR,i and mS,i
indicate the mass of atom i belonging to receptor and solvent,
respectively. We note that, at variance with the integral over the
conjugate momenta, the integral over rR′ and rS cannot be split,
because the coordinates of solute and solvent are inextricably
connected through mixed terms into U(rR′ ,rS). In eq 6, σsol,R and
σS are the symmetry numbers of R into solution and of a
solvent molecule into a pure solvent sample. Specifying that the
symmetry number of R is related to the solution environment is
mandatory, because similar factors will be introduced for the
gas phase and the complex RL. It is worth considering that the
factor arising from the quantum-mechanical correction is not
included in the expression of QN,R(VN,R), because it cancels out
with other analogous contributions to the ABFE. We now
introduce a molecular axis system to separate the lab-frame
coordinates rR′ into internal and external. This molecular axis
system is built taking as reference three atoms of R. Atom 1
becomes the origin of the molecular coordinates, denoted as
RR. The vector joining atom 1 with atom 2 defines the x-axis.
The direction of the y-axis is given by the direction of the
vector joining atoms 2 and 3, minus the x-component of this
vector. The z-axis is constructed as the cross-product of vectors
along the x and y-axes. The six coordinates thus fixed, namely
RR plus the Eulerian angles ξR,1, ξR,2, and ξR,3 that specify the
orientation of the molecular frame relative to the lab-frame,
correspond to the external coordinates of R. The set of 3MR −
6 internal coordinates of R will be indicated with rR. Noting
that the integrals over rR and rS do not depend upon the
position and orientation of R, the integrals over RR, ξR,1, ξR,2,
and ξR,3 can be done at once. Considering that R is typically a
polyatomic nonlinear molecule, the integrals yield 8π2VN,R.
Moreover, considering that the integral over the momenta
components of an atom of mass m yields a factor (2πmRT)3/2,
the partition function of eq 6 can be written as

∏

∏

π
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π

π

=
=
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8
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where

∫= β−Z r re d dN
U r r

,R
( , )

R S
R S

(8)

is the configuration integral for a system consisting of one R
molecule into N solvent molecules. In a similar way, we may
express the partition function of N solvent molecules as

∫ ∫ ∑
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where ZN,0 is the configuration integral for the solvent sample

∫= β−Z re dN
U r

,0
( )

S
S

(10)

Upon substitution of eqs 7 and 9 into eq 5, we obtain

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b00594
J. Chem. Theory Comput. 2017, 13, 5874−5886

5876

http://dx.doi.org/10.1021/acs.jctc.7b00594


∏μ π
σ

π° = −
°

+ ° ̅
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟RT

C
m RT

Z

Z
P Vln

8
(2 )

i

M

i
N

N
sol,R

2

sol,R 1
R,

3/2 ,R

,0
R

R

(11)

Similar arguments lead to a relationship for μsol,L° . However,
considering that the ligand can be also linear in shape and even
a single atom, integration over the orientational degrees of
freedom can give 8π2, 4π, and 1, respectively (from now on, this
geometry factor will be denoted as ξL

). Therefore, the
expression for μsol,L° is

∏μ
σ

π° = −
°
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where the product is extended to the ML atoms of the ligand
and mL,i is the mass of atom i of the ligand. The calculation of
the standard chemical potential of the complex μsol,RL° requires a
specific treatment of the external and internal coordinates of
RL. The former are assumed to be the external coordinates of
R, while the external coordinates of L, indicated as ζL ≡ (RL,
ξL,1, ξL,2, ξL,3), are taken to be defined relative to R, so that they
become internal coordinates of the complex. The arguments
adopted to determine μsol,R° and μsol,L° may also be used here
with the difference that the configuration integral of the
complex must be restricted to the configurations for which R
and L are complexed.53 This can be realized introducing an
indicator function I(ζL) that holds 1 for bound configurations
and 0 otherwise. We then obtain the following expression,
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In the previous equation, ZN,RL is the configuration integral of
RL into solution

∫ ζ ζ= ζ
β ζ−Z I J r r r( ) e d d d dN

U r r r
,RL L

( , , , )
L L R SL

L L R S

(14)

where JζL is the absolute value of the Jacobian determinant for
the rotation and translation of L relative to R, and rL denotes
the internal coordinates of L. We remark that, for purposes of
generality, we keep the full dependence of JζL on the
translational and rotational (external) coordinates of L. Instead,
Gilson and co-workers21 take a Jacobian determinant only
dependent on the rotation of L, implicitly assuming that the
position of L, namely RL, is relative to a Cartesian reference R-
frame. Furthermore, in eq 13, σcp,L and σcp,R are the symmetry
numbers associated with L and R when the complex is in
place.54 A critical discussion on the symmetry numbers is
reported in section I of the Supporting Information. Recasting
eqs 11, 12, and 13 into eq 4, the expression for the standard
ABFE is recovered

σ σ
σ σ
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3. THE DOUBLE-DECOUPLING METHOD
The double-decoupling method is a route to the estimate of
ΔG° and is based on the calculation of the free energy
differences associated with two independent processes entering
the thermodynamic cycle represented in Figure 1. One process,

related to the free energy change ΔG1°, is the decoupling of L
from the solvated RL complex (right process in Figure 1). The
other process, related to the free energy change ΔG2°, is the
decoupling of L from the solvent (left process in Figure 1).
While the former process is physically meaningless, the latter
corresponds to the desolvation free energy of L. In the former
case, decoupling is accomplished by turning off the interactions
of L with solvent and receptor R in a solution of RL, while in
the latter case decoupling is realized by turning off the
interactions of L with the solvent in a solution of L. It is
important to remark that, in both situations, we do not deal
with a total annihilation of L, because its intramolecular
interactions are left in place, and hence L is virtually
“transformed” into an ideal-gas molecule.
Before discussing the decoupling processes and in particular

the details of our approach, it is mandatory to relate ΔG° to the
quantities ΔG1° and ΔG2°. According to Gilson and co-
workers,21 ΔG1° and ΔG2° can be written as

μ μ μΔ ° = ° + ° − °G1 sol,R gas,L sol,RL (16)

μ μΔ ° = ° − °G2 gas,L sol,L (17)

where μgas,L° is the standard chemical potential of L in the ideal-
gas phase and the other standard chemical potentials are
defined in eqs 11, 12, and 13. Considering eq 4 together with
eqs 16 and 17, we can immediately show that

Δ ° = Δ ° − Δ °G G G2 1 (18)

Such a relation is also inferred straightforwardly by the
thermodynamic cycle reported in Figure 1. In the next sections,
we will show how ΔG1° and ΔG2° can be expressed in terms of
configuration integrals, ultimately allowing for a description
through potentials of mean force.

3.1. Decoupling the Ligand from Solvent and
Receptor: ΔG1° Calculation. The standard chemical potential
of L in the ideal-gas phase, μgas,L° , is related to the natural
logarithm of the molecular partition function as

μ° = − °RT Q Vln ( )gas,L 0,L (19)

where it is explicitly reported that the partition function must
be evaluated in the phase space limited to the standard volume
V° = 1/C°. Following the arguments leading to eq 12, we get

Figure 1. Thermodynamic cycle describing the double-decoupling
method.
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In the previous equation, ξL
is from the integral over the

orientation of L ( π π=ξ 8 , 4 , 12
L

for nonlinear, linear, and
single-atom ligands, respectively), σgas,L is the symmetry
number of L in the ideal-gas phase, and Z0,L is the configuration
integral in the internal coordinates:

∫= β−Z re dU r
0,L

( )
L

L

(21)

The external coordinates of L are integrated in eq 20, giving the
contribution σ°ξ C/( )gas,LL

. Substituting eqs 11, 13, and 20
into eq 16, we obtain
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In the double-decoupling method, an artificial energy function
U(λ, ζL, rL, rR, rS) dependent on a control parameter λ ∈ [0,1]
is introduced, whose functional form is rather arbitrary. The
only requirements are that for λ = 0 and λ = 1 the function
must correspond to the energy functions of the coupled and
uncoupled states of the ligand in the complex, respectively:

ζ ζ=U Ur r r r r r(0, , , , ) ( , , , )L L R S L L R S (23)

ζ = +U U Ur r r r r r(1, , , , ) ( , ) ( )L L R S R S L (24)

Exploiting the artificial energy function, a free energy function
dependent parametrically on λ can be built as

∫λ ζ ζ= − ζ
β λ ζ−( )g RT I J r r r( ) ln ( ) e d d d dU r r r

L
( , , , , )

L L R SL

L L R S
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According to g(λ) and to the requirements of eqs 23 and 24,
the free energy difference between the final and initial states is
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where the definitions of the configuration integrals, eqs 8, 14,
and 21, have been used in deriving the second line of eq 26,
after integrating the numerator over ζL. This operation is
allowed because the exponential functions in the numerator are
independent of ζL. Such an integration gives the binding-site
volume ∫ I(ζL)JζL dζL = VζL, a quantity to be estimated
numerically. Here, it is worth noting that, owing to the
inextricable connection between the translational and rotational
coordinates of L (RL, ξL,1, ξL,2, and ξL,3) within the indicator
function I(ζL), the integral ∫ I(ζL)JζLdζL cannot be split
straightforwardly into a product of a translational volume VI
and a rotational volume ξI, as instead reported in ref 21 (cf. eq
26 above with eq 25 of ref 21). Factorization of this integral in
the product VIξI would lead inevitably to an overestimate of the
overall binding-site volume. Thus, translational and rotational

degrees of freedom of L relative to R (external coordinates of
L) within the binding site contribute to the ABFE, and eq 26
quantifies such a contribution.
Substituting eq 26 into eq 22, leads to

σ σ
σ σ

Δ ° = − −
°
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(1) (0) ln
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1
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L

L

(27)

This relationship is the main outcome of Gilson and co-workers
that we report here in a slightly modified form for the sake of
comparison (cf. with eq 28 of ref 21):

π
ξ

σ
σ σ

Δ ° = − −
°

+ ° ̅ − ̅
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⎝⎜

⎞
⎠⎟G g g RT

C V

P V V

(1) (0) ln
8

( )

1

2

I I

RL

L R

R RL (28)

Three significant differences between eqs 27 and 28 can be
remarked. The first, discussed above, relies on the association of
the integral over ζL with a single term, VζL, instead of the
product VI ξI coming from translational and rotational degrees
of freedom of L. Moreover, eq 27 provides a more detailed
definition of symmetry numbers, outlining the fact that ligand
and receptor may change symmetry upon going from one phase
to another. Furthermore, we have also considered the
possibility of dealing with linear molecules or single atoms as
ligands. This is disclosed by the introduction of the parameter

ξL
instead of the factor 8π2 appearing in eq 28, the latter being

valid only for nonlinear ligands. The quantity g(1) − g(0) can
be evaluated via equilibrium MD simulations exploiting the
method of thermodynamic integration.21 However, to gain an
estimate of ΔG1° one must also determine VζL, which may not
be a straightforward task. Also, it is worth noting that eq 27
strictly holds for simulations performed in the canonical (NVT)
ensemble, since only the artificial potential energy function
appears in the exponential function of g(λ) (see eq 25). When
MD simulations are performed by adopting equations of
motion which preserve NPT conditions, we are actually
employing a free energy function supplemented with a P°V
term in the exponential function. As proved in section II of the
Supporting Information, the use of a NPT-like free energy
function allows us to access directly to ΔG1° without any
correction for the partial molar volumes V̅ R and V̅ RL. In the
following, in order to adhere to the Gilson and co-workers’
treatment,21 we preserve the assumptions for the canonical
ensemble, keeping in mind that the pressure-times-volume
corrections must not be considered when simulating in the
NPT conditions.
In this study, we propose to modify the paradigm for the

ligand−receptor binding, adopting a criterion based only on the
position of L relative to R, previously denoted as RL. This
corresponds to turn from a binding function expressed in terms
of position and orientation of L, that is, I(ζL) ≡ I(RL, ξL,1, ξL,2,
ξL,3), to a binding function expressed in terms of the position of
L alone, that is, I(RL). This assumption is consistent with the
common idea that binding occurs basically when the ligand and
receptor come into contact, regardless of the mutual orientation
defined by the variables ξL,1, ξL,2, and ξL,3. Furthermore, limiting
the indicator function to the only positional coordinates of L
could be advantageous in the practice, since it would lead to
simpler constraining protocols for L. Of course, for a generic
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position RL satisfying the binding condition I(RL) = 1, most
orientations of L relative to R will have a negligible probability
of being observed in the coupled state, because of strong atomic
overlaps between R and L. As a consequence, these
configurations will contribute negligibly to the denominator
of eq 26. This scheme allows us to rewrite the free energy
function of eq 25 as

∫λ ξ= − ξ
β λ ξ−(

)
g RT I J JR R

r r r

( ) ln ( ) e d d

d d d

U
R

R r r r
L

( , , , , , )
L L

L R S

L L

L L L R S

(29)

where ξL is a shorthand for (ξL,1, ξL,2, ξL,3), JξL and JRL
are the

absolute values of the Jacobian determinants for the (external)
rotational and translational coordinates of L, respectively, and
dξL ≡ dξL,1dξL,2dξL,3. As noted below eq 14, the Jacobian
determinant JRL

is in general different from 1, being 1 only
when RL is expressed in a Cartesian reference system. The free
energy difference g(1) − g(0) of eq 26 is then restated as

∫
∫
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(30)

In the third line of eq 30, we have carried out the integration
over RL and ξL in the numerator, obtaining VI = ∫ I(RL)JRL

dRL

and ∫ ξ=ξ ξJ d LL L
, the latter being 8π2, 4π, or 1, according to

the structure of L. Contrarily to eq 26, separation of these
integrals can be done into eq 30 because the adopted binding
criterion does not involve the rotational coordinates ξL.
Since the bound states of the complex are identified on the

basis of RL, it is convenient to introduce a potential of mean
force as a function of λ, which includes the internal coordinates
of R and L, the coordinates of the solvent and the orientational
coordinates of L. This potential results to be a function of both
λ and RL:

∫ ξ=βϕ λ
ξ

β λ ξ− −J r r re e d d d dUR R r r r( , ) ( , , , , , )
L L R S

L

L

L L L R S

(31)

According to the above definition of potential of mean force,
the free energy function g(λ) (eq 29) takes the following
simplified form

∫λ = − βϕ λ−( )g RT I JR R( ) ln ( ) e dR
R

L
( , )

LL

L

(32)

Using the definition 32 of g(λ) into eq 30, we obtain

∫
∫

− = −
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(33)

It is worthwhile to note that, in the previous equation, ϕ(1, RL)
does not depend on RL.

55 Nonetheless, in order to preserve
consistency of notation, from now on the symbol RL will be
explicitly indicated into ϕ(λ, RL), regardless of λ.
3.1.1. BiD-AP Scheme in Nonequilibrium Alchemical

Transformations. In the following two sections, we report on
two alternative schemes to compute ΔG1°. The first, termed
BiD-AP (binded-domain alchemical-path) scheme, is based on

the direct estimate of g(1) − g(0) (eq 33). In this aspect the
methodology is analogous to that of Gilson and co-workers.21

In particular, g(1) − g(0) is computed from nonequilibrium
MD simulations, instead of using thermodynamic integration
via equilibrium MD simulations. In nonequilibrium alchemical
transformations, according to the fact that the end states must
be related to the complex RL (see eq 33), the initial microstates
have to represent bound RL configurations sampled at
equilibrium.43 Moreover, in order to attain a bound RL
configuration in the final microstate, we must prevent the
ligand from leaving the binding site during the sampling. When
dealing with a strongly bound complex, the correct sampling
weight of the initial microstates can be guaranteed implicitly by
an equilibrium MD simulation, without enforcing any
constraint to keep the ligand in the bound state. In such a
case, a precise definition of bound-complex configurations is
unimportant so long as binding is tight and all the statistically
important bound configurations are sampled during the
simulation.21 For weak complexes, preserving bound config-
urations during a standard equilibrium MD simulation can
instead be difficult. This requires that bound RL configurations
are sampled by enforcing some walled potential matching
I(RL). This equilibrium sampling provides an amount of
isothermally and isobarically sampled microstates, say Ntraj, to
be taken as initial phase-space points for the nonequilibrium
alchemical trajectories. Equation 33 establishes that L must be
in the same binding site in both the initial and final states. This
can be accomplished by creating a bijective mapping between
these states, with the aim of preventing the ligand from leaving
the binding site. Recently, some of us developed a non-
equilibrium approach able to guarantee such a mapping,46

allowing the estimate of free energy differences between two
configurational domains by means of steered MD simulations
combined with nonequilibrium work theorems.44,56−58 The
method is based on the creation of a phase-space mapping
applied during the nonequilibrium trajectories, whether to the
control parameter employed to switch the system from the
initial to the final state or to some phase-space variable (not
directly correlated to the control parameter) taken to define the
two configurational domains. The latter is just the situation that
we may apply to the alchemical transformations. Evolving in
time the λ control parameter from 0 (coupled ligand) to 1
(uncoupled ligand) according to some established time
schedule, the coordinate RL of the ligand relative to the
receptor is mapped to bring the system from a coupled to an
uncoupled configuration within the binding site. This is
accomplished by fixing the RL coordinate to the initial value
(obtained from the equilibrium sampling) during the
alchemical transformation, thus preventing the ligand from
leaving the binding site. A constraint to RL can be applied
whether using some constraining method, such as RATTLE59

or SHAKE,60 or more simply by enforcing stiff (harmonic)
potentials to the three components of RL. Using this simulation
scheme, we thus produce Ntraj alchemical trajectories that allow
computation of the free energy difference g(1) − g(0) by using
the Jarzynski equality:44

− = − ⟨ ⟩β−g g RT(1) (0) ln e W
(34)

where the average is performed over the Ntraj work values W
associated with the alchemical trajectories. For a generic
trajectory, the work is computed with the standard formula1
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∫ λ ξ
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where RL is fixed to the value of the initial microstate and τ is
the duration time of the alchemical trajectory. We outline that
the explicit dependence on time lies only on the λ parameter,
while the other variables are uncontrolled degrees of freedom.
Furthermore, it is worth remarking that the validity of eq 34 for
computing g(1) − g(0) of eq 33 stems from having imposed a
mapping which leaves the RL complex within the same binding
site for the whole ensemble of alchemical paths.
Once the quantity g(1) − g(0) is estimated, the contribution

ΔG1° to the ABFE can be computed through the following
relationship (use the third line of eq 30 into eq 22)

σ σ
σ σ
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P V V
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( )

1
I

cp,L cp,R

gas,L sol,R

R RL (36)

It is important to note that, as in the thermodynamic
integration method, the calculation of the binding-site volume
VI needs to be carried out. An illustrative example on how to
compute VI for a Zn(II)·anion complex is given in ref 47. A
schematic illustration of the BiD-AP scheme is reported and
shortly described in Figure 2.

3.1.2. SiP-AP Scheme in Nonequilibrium Alchemical
Transformations. To avoid the calculation of VI, which implies
knowledge of a way of evaluating the function I(RL), we
propose a different way to compute the ratio of integrals
appearing in the second line of eq 30. This second approach,
termed SiP-AP (single-point alchemical-path) scheme, has
some similarity with other alchemical methods based on
equilibrium MD simulations.35,36,61 Noting that e−βϕ(1,RL) does

not depend on RL
55 and that ∫ I(RL)JRL

dRL = VI, we can
rewrite eq 33 as

∫
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In the previous equation, the quantity ξL
does not appear in

the numerator because the integral over the orientational
coordinates of L is included into e−βϕ(1,RL) (see eq 31).
Substituting eq 37 into eq 36 yields

∫
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(38)

With respect to the BiD-AP scheme represented by eq 36,
explicit knowledge of the positional binding-site volume VI is
not necessary in eq 38. On the other side, here we need to
compute the integral over RL, which implies to determine the
difference between the potentials of mean force for the coupled
and uncoupled systems as a function of RL, i.e. ϕ(0, RL) − ϕ(1,
RL). Indeed, this may not be a simple task. To tackle this
problem, we resort to a reference configuration of the complex
RL featured by an established position of L, say RL′ . The
definition of this configurational state allows us to write

∫

∫
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(39)

where, considering that ϕ(1,RL) is independent of RL, the
equality ϕ(1,RL) = ϕ(1,RL′) has been used. Numerator and
denominator of the right-hand side of eq 39 can be computed
separately. The denominator can be computed from an
equilibrium MD simulation of the RL complex (for tight
binding), or using some method to sample preferentially bound
configurations of the complex, such as the umbrella sampling
method62 (for weak binding). In any case, regardless of the
employed simulation method, configurations featured by RL =
RL′ must be sampled during the equilibrium MD simulation, as
the function ϕ(0,RL) must be defined at the configuration RL′ .
Therefore, even if the position RL′ of the reference configuration
can in principle be chosen arbitrarily, it is statistically
convenient that I(RL′) = 1, or better that RL′ falls in a
binding-site region with small value of the potential of mean
force (high probability region).
We point out that the denominator of the second line of eq

39 corresponds to the probability density of finding the ligand
at the position RL′ once the complex RL is formed. This can be
recognized writing the denominator as follows

∫
ρ ′ ≡ =

Δ ′
Δ
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where Δp(RL′) is the infinitesimal probability that L is found in
the volume element JRL′ΔRL centered into RL′ during an
equilibrium sampling of the complex in the bound state. Note
that the Jacobian determinant JRL′ is computed at the position

Figure 2. Schematic illustration of the BiD-AP scheme. R is displayed
in magenta, while L in the coupled and uncoupled states is in green
and white, respectively. The black circles are the origins of the R and
L-frames. The volume VI = ∫ I(RL)JRL

dRL entering eq 36 is computed
from an equilibrium simulation of the complex in the binding site
defined by the dashed lines. The initial microstates of the alchemical
trajectories are represented by the top configurations. They are
sampled from an equilibrium simulation of the complex in the binding
site, with L coupled to R and solvent (λ = 0). Such a simulation is the
one also adopted for computing VI. The position of the L-frame
relative to the R-frame, RL (black arrows), is fixed during each
alchemical trajectory. The final microstates of the alchemical
trajectories are represented by the bottom configurations (with L
decoupled from R and solvent, that is, λ = 1). The work valuesW1,W2,
...,WNtraj

performed on the system during the alchemical trajectories are

calculated using eq 35 and employed into eq 34 to recover g(1) −
g(0), to be finally used into eq 36.
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RL′ . Let us suppose that the bound state of the complex is
sampled through an equilibrium simulation, or, more generally,
through a simulation adopting some biasing potential, for
example, using umbrella sampling.62 In such a situation, we can
define a position RL′ of L and a resolution ΔRL for establishing
when the system takes that position. Denoting the number of
times the system visits the configuration RL′ as Δ ′RL

and the
total number of bound configurations sampled during the MD
simulation as tot, the probability of interest is simply
computed as

Δ ′ =
Δ ′

p R( ) R
L

tot

L

(41)

As stated above, Δp(RL′) must be computed from an
equilibrium MD simulation of the bound complex. This
requirement leads to the sampling problems already discussed
for the BiD-AP scheme, specifically when dealing with a weakly
bound complex. As suggested in section 3.1.1, we may resort to
hard-walled or restraining potentials to enforce the sampling of
bound configurations. Additionally, soft potentials combined to
reweighting procedures62 may be employed to restrain the
ligand in the binding site.63−65 In such cases, an energy term
would appear in eq 24 that is explicitly dependent on RL,
meaning that the potential of mean force at λ = 1 is no longer
independent from RL. This implies that the equality ϕ(1,RL) =
ϕ(1, RL′), required to write down eq 39, no longer holds. The
difference between the two potentials of mean force can
however be estimated analytically, as described in refs 35 and
36.
The numerator of the second line of eq 39 is estimated

through an alchemical transformation. Analogously to the BiD-
AP scheme, a number of initial microstates are sampled at
equilibrium by fixing the position of L to RL′ . Starting from
these microstates, nonequilibrium trajectories are performed
with an established time schedule for λ, from λ = 0 to λ = 1.
The works computed from these trajectories via eq 35 are thus
employed in the Jarzynski equality44 (eq 34) to evaluate the
free energy difference between the initial and final states, which
corresponds to ϕ(1, RL′) − ϕ(0, RL′).
In summary, considering the introduction of a reference

configuration (eq 39) and the definition of probability density
(eq 40), ΔG1° can be rewritten as
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where ρ(RL′) and the difference ϕ(1,RL′) − ϕ(0,RL′) are
computed as described above. A schematic illustration of the
SiP-AP scheme is shown and shortly described in Figure 3. We
point out that, when NPT simulations are performed in the
place of NVT simulations, eq 42 still holds, with the only
difference being that no corrections dependent upon the partial
molar volumes V̅R and V̅RL have to be considered.
Moreover, it is important to note that the SiP-AP scheme can

be applied with both equilibrium (e.g., thermodynamic
integration35) and nonequilibrium alchemical simulations,
while the BiD-AP methodology is intrinsically a nonequilibrium
simulation technique. As a matter of fact, applying the SiP-AP
scheme in an equilibrium simulation framework, which simply

corresponds to enforcing a constraint to the translations of the
ligand, is straightforward, as shown, for example, by Deng and
Roux in ref 36. In this regard, eq 42 may be viewed as a
reformulation29,35 of the Deng and Roux approach in the limit
of strong restraints, where only the ligand position vector is
held fixed at RL′ during the alchemical decoupling.
As a final remark, we notice that the BiD-AP and SiP-AP

methods can be extended to alchemical simulations involving
also rotational constraints. Extension of the theory to account
for alchemical processes where the ligand is subject to both
translational and rotational constraints is formulated in section
III of the Supporting Information.

3.2. Decoupling the Ligand from the Solvent: ΔG2°
Calculation. The contribution ΔG2° to ΔG° corresponds to
the free energy difference between the state in which L is
decoupled from the solvent (L in the gas phase and pure
solvent in the condensed phase) and the state in which L is
coupled to the solvent (solution of L in the solvent). From the
physical standpoint, ΔG2° therefore represents the desolvation
free energy of L. It is obtained by substituting eqs 12 and 20
into eq 17,

σ
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Z Z
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,0 0,L
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L

(43)

where ZN,L, ZN,0, and Z0,L are the usual configuration integrals.
At variance with ΔG1°, the contribution ΔG2° does not depend
upon the choice of the standard concentration. In this case, the
artificial energy function U(λ, ζL, rL, rS) does not depend upon
the internal coordinates of R, as we simply deal with L in the
solvent. The requirements on U are that, for λ = 0 and λ = 1,
the artificial energy function must correspond to the energy
functions of the coupled and uncoupled states of L in the
solvent, respectively:

ζ ζ=U Ur r r r(0, , , ) ( , , )L L S L L S (44)

Figure 3. Schematic illustration of the SiP-AP scheme. R is displayed
in magenta, while L in the coupled and uncoupled states is in green
and white, respectively. The black circles are the origins of the R and
L-frames. The quantity ρ(RL′) entering eq 42 is computed from an
equilibrium simulation of the complex in the binding site defined by
the dashed lines (no constraints are applied to L). The initial
microstates of the alchemical trajectories are represented by the top
configurations. They are sampled from an equilibrium simulation of
the complex in which L is fixed at the position RL′ (black arrows) and
coupled to R and solvent (λ = 0). The position of L, RL′ , is fixed during
each alchemical trajectory and is the same for all trajectories. The final
microstates of the alchemical trajectories are represented by the
bottom configurations (with L decoupled from R and solvent, that is, λ
= 1). The work values W1, W2, ..., WNtraj

performed on the system
during the alchemical trajectories are calculated using eq 35 and
employed into eq 34 to recover ϕ(1, RL′) − ϕ(0,RL′), to be finally used
into eq 42.
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ζ = +U U Ur r r r(1, , , ) ( ) ( )L L S S L (45)

where the external coordinates of L are now relative to the lab-
frame. A free energy function dependent parametrically on λ
can be built exploiting the artificial energy function as

∫λ ζ= − ζ
β λ ζ−( )g RT J r r( ) ln e d d dU r r( , , , )

L L SL

L L S

(46)

According to g(λ) and to the requirements of eqs 44 and 45,
the free energy difference between the final and initial states is
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Note that the integrals over the internal coordinates of the
solute, rL, and over the coordinates of the solvent, rS, do not
depend upon the position or orientation of the solute, ζL, and
hence the integrals over ζL may be carried out at once yielding

ξV
L
, where V is the volume of the container (simulation box)

and arises from the integral over the position RL, while ξL

arises from the integral over the orientation (ξL,1, ξL,2, ξL,3). As
this volume term appears in both numerator and denominator
of eq 47, it cancels out.
We may now define the free energy function g(λ) in terms of

the potential of mean force as a function of position and
orientation of the ligand:

∫λ ζ= − ζ
β λ ζ− Φ( )g RT J( ) ln e d( , )

LL

L

(48)

where

∫=β λ ζ β λ ζ− Φ − r re e d dU r r( , ) ( , , , )
L S

L L L S

(49)

As observed above, the integrals over rL and rS into eq 49 do
not depend upon ζL. For this reason, the potential of mean
force Φ(λ, ζL) is independent of ζL and hence it will be
denoted as Φ(λ). This allows to write eq 48 as

λ λ= Φ − ξg RT V( ) ( ) ln( )
L (50)

Using eq 50 into eq 47 for expressing g(0) and g(1) and
substituting the resulting equation into eq 43 yields

σ
σ

Δ ° = Φ − Φ − − ° ̅
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟G RT P V(1) (0) ln2

sol,L

gas,L
L

(51)

We notice that the knowledge of σgas,L is not mandatory,
because it drops out when eq 51 is recombined with eq 36 (if
using BiD-AP) or eq 42 (if using SiP-AP) to recover ΔG° via
eq 18.
Operatively, ΔG2° can be computed using nonequilibrium

MD simulations in the usual way. First, a set of initial
microstates is produced through an equilibrium MD simulation
of one L molecule into N solvent molecules (without any
constraint). Starting from these microstates, nonequilibrium
trajectories are performed with an established time schedule for
λ, starting from λ = 0 (coupled ligand) and ending to λ = 1
(uncoupled ligand). The works computed from these
alchemical trajectories by means of a relationship analogous
to eq 3566 are then employed in the Jarzynski equality44 (eq

34) to evaluate the free energy difference Φ(1) − Φ(0), to be
finally used into eq 51.

4. USING THE LIGAND−RECEPTOR DISTANCE AS
BINDING DESCRIPTOR IN THE
DOUBLE-DECOUPLING METHOD

The alchemical schemes presented in sections 3.1.1 and 3.1.2
are based on a binding descriptor relying on the position of a
reference atom of L relative to an atom of R, specifically the RL
vector. A special important case of such an approach is to use a
binding descriptor based on the magnitude of RL. Here, the
ligand−receptor distance is assumed to be the fundamental
quantity defining a bound state, which is, in general, a reliable
assumption when configurations belonging to a limited
orientational subspace of RL contribute to the bound state. In
addition, the ligand−receptor distance is suitable for describing
complexes forming isotropic or nearly isotropic bound
configurations of the complex, such as a ligand within a cage-
like binding site. This binding descriptor has been employed to
determine the ABFEs of complexes of β-cyclodextrin with
aromatic compounds.47 In this section, we discuss how the
basic relationships of the method, namely eq 36 for the BiD-AP
scheme and eq 42 (together with the companion eqs 40 and
41) for the SiP-AP scheme, are modified upon using |RL| as
binding descriptor.
To simplify the notation, we define the distance between the

origins of the L and R-frames as r, namely r ≡ |RL|. Without loss
of generality, the origin of the L-frame, as well as that of the R-
frame, can be an atom, the centroid of a subset of atoms or the
center of mass. The distance r is the parameter taken to
establish when the complex is or is not in place, according to
the value of the indicator function I(r), which can be 1 or 0. In
principle, to apply this criterion, we need to define two
threshold distances, say r1 and r2, such that I(r) = 1 if r1 < r < r2
and I(r) = 0 otherwise. However, as emerged from the previous
discussion, the indicator function enters the double-decoupling
method in no explicit way. This suggests that one may not need
to define r1 and r2, provided that a “way” can be devised to
sample most of the bound configurations during an equilibrium
MD simulation. As already discussed in sections 3.1.1 and 3.1.2,
for complexes with large binding constants, this “way” can be
guaranteed from the equilibrium simulation itself, because the
complex, owing to its stability, never dissociates during the
simulation. Problems may instead occur when dealing with
weakly bound complexes. These situations can be treated only
introducing some external information on shape and size of the
binding site, through a geometrical definition of I(r), via hard
or soft potential. Of course, in these restraining strategies,
significant errors can be introduced, arising from an ill
definition of the binding free energy basin. For this reason,
the weaker the binding is, the greater is the error. In the limit
case of an almost flat free energy binding basin, one has to
resort to some arbitrary criterion to define I(r), calling into play
physical features of the complex, which do not include the mere
energetical stability.
Considering that the coordinate r corresponds to the

distance between the origins of the R- and L-frames, it is a
natural choice to use spherical polar coordinates for
representing RL, that is, RL ≡ (r, θ, φ), where θ is the angle
between RL and the z-axis of the R-frame and φ is the angle
formed by the projection of RL on the xy-plane of the R-frame
and the x-axis of the same frame. Then, we make explicit the
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coordinates r, θ and φ into eq 29, expressing the indicator
function I(RL) in terms of the r coordinate:

∫λ θ ξ= − ξ
β λ ξ−(

)
g RT I r r J R r r

r

( ) ln ( ) sin e d d d d dU R r r r2 ( , , , , , )
L L L R

S

L
L L L R S

(52)

where r2 sin θ is the Jacobian determinant JRL
and, for the sake

of compactness, RL ≡ (r, θ, φ) and dRL ≡ dr dθ dφ. The other
symbols in eq 52 preserve their original meaning. Thus, the free
energy difference g(1) − g(0) of eq 30 becomes

∫
∫

θ ξ

θ ξ

π

−

= −

= −
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β β
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β ξ
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− −
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R r r r

R r r r
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( ) sin e d d d d d

ln 4

U U

U

N
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r r r

R r r r

2 ( , ) ( )
L L L R S

2 ( , , , , )
L L L R S

I
,R 0,L

,RL

L
R S L

L
L L L R S

L (53)

In the third line of the previous equation, the factor 4π arises
from integration over θ and φ, the factor ξL

(equal to 8π2, 4π,
or 1 according to the structure of L) arises from integration
over the orientational coordinates of L (i.e., ξL) and VI = ∫ I(r)
r2 dr. The third line of eq 53 allows us to write ΔG1° of eq 22 as
(viz. eq 36)

π
σ σ
σ σ

Δ ° = − −
°

+ ° ̅ − ̅

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟G g g RT

V C

P V V

(1) (0) ln
1

4

( )

1
I

cp,L cp,R

gas,L sol,R

R RL (54)

This relationship allows an estimation of ΔG1° through the BiD-
AP scheme, as explained in section 3.1.1.
To adopt the SiP-AP scheme, we have to recognize that the

unnormalized average probability of finding the ligand in a
generic point at a distance r from the origin of the R-frame (for
a given λ) corresponds, up to a multiplication factor, to the
radial distribution function, which, in turn, equals the
exponential of the potential of mean force, e−βϕ(λ,r):

∫π
θ θ ϕ ξ=βϕ λ

ξ
β λ θ ϕ ξ− −J r r re

1
4

sin e d d d d d dr U r r r r( , ) ( , , , , , , , )
L L R SL

L L R S

(55)

The quantity 4πr2e−βϕ(λ,r)dr is therefore proportional to the
probability of finding L into a spherical shell of radius r and
thickness dr centered at the origin of the R-frame. According to
the above definition of potential of mean force, the free energy
function g(λ) (eq 52) becomes

∫λ π= − βϕ λ−( )g RT I r r r( ) ln ( )4 e dr2 ( , )
(56)

Used in the second line of eq 53, the previous equation gives
the free energy difference g(1) − g(0)

∫
π

π
− = −

βϕ

βϕ

−

−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟g g RT

V

I r r r
(1) (0) ln

4 e

( )4 e d

r

r
I

(1, )

2 (0, )
(57)

In this equation, integration over r is carried out because ϕ(1,r)
does not depend on r (analogously to ϕ(1, RL) in eq 37). Using
eq 57 in eq 54 yields

∫
σ σ
σ σ π

Δ ° = −
°

+ ° ̅ − ̅

βϕ

βϕ
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−

⎛
⎝
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⎟⎟G RT
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ln
e

( )4 e d

( )

r

r1
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gas,L sol,R

(1, )

2 (0, )

R RL (58)

As done in section 3.1.2, we introduce a reference configuration
corresponding to r = r′, with r′ being an arbitrary established
value of r (in analogy with RL′ of section 3.1.2). This allows to
write

∫ ∫π π
=

βϕ

βϕ

β ϕ ϕ βϕ

βϕ

−

−

′ − ′ − ′

−I r r r I r r r
e

( )4 e d
e e

( )4 e d

r

r

r r r

r

(1, )

2 (0, )

[ (0, ) (1, )] (0, )

2 (0, )
(59)

where, the equality ϕ(1,r) = ϕ(1,r′) has been used.
According to the SiP-AP scheme, the free energy difference

ϕ(1,r′) − ϕ(0,r′) in the numerator of eq 59 is estimated by
means of alchemical transformations. A number of initial
microstates of the coupled system (λ = 0) are sampled at the
fixed r = r′. Starting from these microstates, nonequilibrium
trajectories are performed with an established time schedule for
λ, from λ = 0 to λ = 1. The works computed from these
trajectories via eq 35 are thus employed in the Jarzynski
equality44 (eq 34).
The remaining part of eq 59 is computed upon considering

that it corresponds to the probability density of finding L in a
generic point at the distance r′ from the origin of the R-frame,
once the complex is in a bound configuration, that is, I(r) = 1:

∫
ρ

π π
′ = =

Δ ′
′ Δ

βϕ

βϕ

− ′

−r
I r r r

p r
r r

( )
e

( )4 e d

( )
4

r

r

(0, )

2 (0, ) 2
(60)

where Δp(r′) is the infinitesimal probability that L is found in a
spherical shell of radius r′ and volume 4πr′2Δr (the center
being the reference R point) during an equilibrium MD
simulation with the complex restrained in the bound state. This
simulation can be carried out as explained in section 3.1.2 (see
discussion of eq 41).
In summary, considering the introduction of a reference

configuration (eq 59) and the definition of probability density
(eq 60), ΔG1° of eq 58 can be rewritten as

ϕ ϕ ρ
σ σ
σ σ

Δ ° = ′ − ′ − ′
°

+ ° ̅ − ̅

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟G r r RT r

C

P V V

(1, ) (0, ) ln ( )

( )

1
cp,L cp,R

gas,L sol,R

R RL (61)

As discussed previously, the quantity ϕ(1,r′) − ϕ(0,r′) is
computed evaluating the difference of the potential of mean
force of coupled and uncoupled states via nonequilibrium
alchemical transformations by constraining the ligand−receptor
distance r to the value of r′. The quantity ρ(r′) is computed
from eq 60.

5. CONCLUDING REMARKS
The fast-switching decoupling method is a powerful technique
to compute absolute binding free energies of ligand−receptor
(RL) complexes. Compared to equilibrium alchemical
approaches such as those based on the free energy perturbation
method,67,68 it has been shown31 that nonequilibrium
alchemical simulations may provide comparable or even better
performances both in terms of precision and computer time. It
is also worth noting that, in such techniques, the sampling for
performing alchemical transformations is limited to the initial
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state, in which the RL system is fully coupled. In equilibrium
approaches, correct sampling must instead be guaranteed also
for each intermediate nonphysical state in which the alchemical
path is divided. While sampling of the fully coupled system may
somehow be verified on the basis of some preliminary
(experimental) information of the system itself, in equilibrium
methods the reliability in sampling the intermediate states can
be verified with greater difficulties, because no information can
be gained from any experimental technique. In the current
implementations, fast-switching decoupling is applied without
constraining the RL complex in the bound state.30 Even if this
has been revealed computationally effective,31,43 a sound
theoretical ground requires that the bound state of the complex
is preserved during decoupling of the ligand from receptor and
solvent. Here, we have addressed this issue supplementing the
method with the possibility of performing alchemical
trajectories with the ligand constrained to a fixed position
relative to the receptor. Binded-domain alchemical-path (BiD-
AP) and single-point alchemical-path (SiP-AP) schemes allow
us to compute the decoupling free energy contribution to the
absolute binding free energy without resorting to the explicit
calculation of the orientational binding-site volume.21 With
respect to fast-switching decoupling without constraints,30 BiD-
AP prevents the ligand from leaving the binding site, but still
requires an estimate of the positional binding-site volume. SiP-
AP is an evolution of BiD-AP, in which a reference
configuration of the RL complex is introduced to split the
decoupling free energy of the ligand from solvent and receptor
into two separate terms, one computed from an equilibrium
MD simulation of the fully coupled bound state of the complex
and the other from nonequilibrium alchemical transformations
of the complex constrained in the reference configuration. The
improvement with respect to the BiD-AP scheme is that the
SiP-AP scheme allows to avoid the calculation of the positional
binding-site volume. The price that we have to pay to obtain
such an advantage is to carry out an additional equilibrium MD
simulation to compute the probability density.
BiD-AP and SiP-AP techniques are based on a binding

descriptor corresponding to the position of a reference atom of
the ligand with respect to a given atom of the receptor. As
shown, the two schemes can also be devised to employ the
simple distance between the two atoms as binding descriptor.
The drawback of such an approach is that one has to assume
that complete orientational sampling of the ligand is attained
during the equilibrium MD simulations of the bound RL
complex, whether in the MD simulation performed to get the
initial microstates of the alchemical trajectories or, in the case of
the SiP-AP scheme, in the one aimed at computing ρ(RL′).
However, in most cases, specific ligand−receptor interactions
make the ligand orientationally hindered within the binding
site, namely the ligand makes librations around a well-defined
free energy minimum. This supports the assumption that an
exhaustive orientational sampling is reached during an
equilibrium MD simulation of the complex. The fact that
alternative orientational poses are possible for a complex, with
comparable binding affinity, could introduce important errors
in the methodology. Nonetheless, this type of problem is
common to all the double-decoupling based methods. In such
cases, one must introduce an a priori knowledge of possible
poses of the ligand or to resort to some advanced sampling
technique based, for example, on replica exchange or serial
generalized ensemble schemes.16,69−73 Techniques based on

the freezing of atoms far from the binding site could also be
implemented to speed up the nonequilibrium trajectories.74−77

A further important problem, intrinsically related to fast-
switching, lies in the fact that only decoupling alchemical
trajectories are employed or, using a term borrowed from
nonequilibrium work theories,57,58 that the fast-switching
process is monodirectional. This leads to the use of the
Jarzynski equality44 as free energy estimator, which is known to
provide biased free energy estimates so long as the decoupling
simulation trajectories are fast. A possible way to reduce the
bias and hence to improve the accuracy, is to increase the
number of decoupling trajectories using, for example, non-
equilibrium alchemical simulations powered with path-breaking
based algorithms.78,79

Finally, it is worth noting that the introduction of constraints
in the fast-switching decoupling method, as done with both
BiD-AP and SiP-AP, makes the methodology suitable for being
extended to bidirectional processes, namely to combine in a
unified scheme40,41 both decoupling and coupling trajectories.
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