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We propose a new approach for the umbrella sampling method in molecular dynamics simulations of complex
systems. An accelerated sampling of the slow degrees of freedom is achieved by generating a single self-
adaptive trajectory that tends to span uniformly the reaction coordinate using a time dependent bias potential
derived from the preceding history of the system. To show the convergent behavior and the efficiency of the
method, we present the free energy surface of alanine dipeptide in water as a function of the backbone dihedral
angles.

The ability of molecular dynamics (MD) simulations to study
differences of entropy-related thermodynamic potentials of
complex systems is strongly limited by the time needed to
perform an ergodic sampling of the configurational space. In
the original umbrella sampling (US) approach,1 an enhanced
sampling of slow degrees of freedom is achieved by performing
simulations in an artificial ensemble, obtained by adding an
external potentialV to the real HamiltonianH. This potential
has to be chosen so as to flatten the free energy surface (FES)
along a selected multidimensional reaction coordinates(r ) (r
is the vector of the 3N coordinates of the system), preventing
the system from being trapped in a local minimum. The
probability density for the unbiased system is recovered from
the biased one through the relation2

whereδ(...) is the Dirac function,â ) (kBT)-1 with kB being
the Boltzmann constant. In eq 1 the primed angular brackets
stand for a canonical average in the thermodynamic ensemble
governed by the Hamiltonian

Ideally, to obtain an uniform sampling, one must choose a bias
potential equal to the free energy inverted in sign, i.e., the very
quantity we are trying to determine. A common solution to this
circular problem is to perform a series of subsequent, quasi-
equilibrium simulations as prescribed by the adaptive US
method.3-5 The bias potential is updated at the beginning of

each simulation by matching the statistics resulting from all the
previous runs. Recently, different approaches to reconstruct the
FES self-consistently have been proposed. These methods are
based on a history-dependent bias potential (metadynamics6)
or force (adaptive biasing force method7,8) that is continuously
varied during a single non-equilibrium trajectory.

In this paper, we combine in a unified approach US-based
method with a continuously adapted bias potential. To this aim,
inspired by the self-healing capabilities of the metadynamics
of a non-stationary probability distribution, we fully exploit the
“inexact” non-equilibrium nature of the adaptive US methodol-
ogy. This procedure leads to a parameter-free self-consistent
algorithm where improved estimates of the probability are
determined “on the fly” with no need for a posteriori analysis
for combining the statistics resulting from different bias
potentials.

Consider a system in the canonical ensemble. Given a generic
n-dimensional reaction coordinates depending on the atomic
coordinates (e.g., a distance in a dissociation reaction or a
dihedral angle in an isomerization process), the free energyA(s)
is defined in terms of the probability density ofs, as

If the ergodic hypothesis applies,F(s), and henceA(s), can be
calculated by means of a time average over an equilibrium
trajectory. To overcome the slow convergence of such average,
we can generate a perturbed trajectory of the original system
under the action of an external potential, providing that a relation
is given to recover the correct statistics for the unperturbed
system. In the case of an external potentialV(s) not explicitly
dependent on time, as in the standard US method,1 this relation
is eq 1. The natural choice for a history-dependent biased
dynamics is to use a logarithmic relation between the time-
dependent bias potentialV(s, t) and some estimate of the real

* Corresponding author. E-mail: procacci@chim.unifi.it
† Universitàdi Firenze.
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F(s) ) 〈δ(s - s(r ))〉 )
〈δ(s - s(r )) eâV(s(r ))〉′

〈eâV(s(r ))〉′
(1)

H′ ) H + V(s(r )) (2)
A(s) ) -â-1lnF(s) (3)
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probability densityF(s) at time t, F(s, t)

whereF(s, t) is a normalized function at eacht, such that 0<
F(s, t) < R for anysand any arbitrary value ofR. This definition
of bias potential automatically leads to a fast sampling of the
reaction coordinate, exhorting the system to visit configurational
states for whichF(s, t) is small. In this case the dynamics of
the system is governed by the time-dependent Hamiltonian

However, we have not yet exactly defined the functionF(s, t).
If there can be found a definition such thatF(s, t), expressed as
a time average, converges to the correct ensemble average for
the probability densityF(s) in the long time limit, thenF(s, t)
can be taken as a correct estimate ofF(s). We can start by
noticing that, in the hypothesis that the biased system is ergodic,
the ensemble averages in eq 1 can be expressed as time integrals,
such that

where the dynamics is driven by the Hamiltonian of eq 2. For
the explicitly time dependent bias potential of eq 4, we define
F(s, t) in a similar fashion, i.e.,

where the dynamics is generated by the time-dependent Hamil-
tonian of eq 5. Substituting eq 4 into eq 7 we obtain a recursive
relation for the probability density

Equation 8 can be easily implemented in standard MD simula-
tion programs with minor modifications. Starting fromanyinitial
arbitrary non-zero density, it can be shown (see Supporting
Information) that the resulting non equilibrium dynamics
automatically evolves to a stationary state where the bias
potential nullifies the underlying free energy and the probability
density converges to the exact solution. As in metadynamics,
any kind of discrepancy between the biasing potential and the
FES inverted in sign will be corrected by the subsequent
dynamics. In the algorithm summarized by eqs 8 and 4, the
evolution of the time-dependent Hamiltonian stems exclusively
from the dynamics of the system and vice versa. Therefore, the
method does not involve system-dependent parameters or
corrections, reducing user intervention to a minimum.

To highlight the power and reliability of the algorithm, we
report the exploration of the FES using eq 8 of the solvated
alanine dipeptide as a function of the dihedral anglesΦ and
Ψ.

The simulation of one dipeptide molecule and 288 water
molecules was performed in the constant volume (cubic box of
21 Å side-length with standard periodic boundary conditions),
constant temperature (300 K) thermodynamic ensemble using
the program ORAC.9 The temperature control was achieved

using a Nose´-Hoover thermostat.10 The dipeptide is modeled
using the Amber03 force field.11 For water we used the TIP3P
potential.12 Electrostatics has been treated by the smooth particle
mesh Ewald method.13 Further details about the simulation
protocol are reported in Supporting Information.

The FES of the solvated alanine dipeptide depending onΦ
andΨ has already been investigated in several computational
studies (see refs 6 and 11 and references therein). The FES of
isomerization of the alanine dipeptide obtained from our
methodology is reported in Figure 1 for two sampling simulation
times, i.e., 1 and 10 ns. The reference FES obtained from
standard US technique1 is reported in Figure S1 of Supporting

V(s, t) ) â-1lnF(s, t) (4)

H′ ) H + â-1lnF(s, t) (5)

F(s) ) lim
tf∞

∫0

t
δ[s - s(τ)] eâV(s(τ)) dτ

∫0

t
eâV(s(τ)) dτ

(6)

F(s, t) )
∫0

t
δ[s - s(τ)] eâV(s(τ),τ) dτ

∫0

t
eâV(s(τ),τ) dτ

(7)

F(s, t) )
∫0

t
δ[s - s(τ)] F(s, τ) dτ

∫0

t
F(s(τ),τ) dτ

(8)

Figure 1. FES of the alanine dipeptide system as a function ofΨ and
Φ torsional angles, estimated after a simulation time of 1 ns (middle
panel) and 10 ns (bottom panel). The free energy (chromatic) scale is
in kJ mol-1. The zero free energy is set in the absolute minimum of
each surface. The reference FES (obtained by standard US) is provided
in Supporting Information.
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Information. We see that, after only 1 ns, the system has scanned
theentiredomain of the bi-dimensional reaction coordinate with
a good accuracy. In particular, the transition path between the
C7eqandRR free energy minima6 can be clearly seen. The three
main free energy minima are located atΦ ) -70°, Ψ ) -20°
(RR), Φ ) -70°, Ψ ) 155° (C7eq) andΦ ) - 155°, Ψ ) 155°
(C5). Setting the free energy of the deeper minimum (C7eq) as
the zero point, the relative depth of theRR minimum is∼0.5 kJ
mol-1 and the transition state betweenC7eqandRR is located at
Φ = -80°, Ψ ) 70° with activation energy of about 10 kJ
mol-1. These results agree with previous calculations obtained
with the same force field,11 showing the balance between the
extended and the helical FES regions of alanine dipeptide.

The convergence of the algorithm can be appreciated in
Figure 2, where we provide the evolution of the root-mean-
square deviation of the calculated FES with respect to the
reference one. After 1 ns of simulation (see FES in the middle
panel of Figure 1) the average error is less than 2 kJ mol-1.
After 10 ns of simulation (see FES in the bottom panel of Figure
1) the average error is as small as 0.5 kJ mol-1.

In conclusion, the method we present here utilizes, in the
spirit of the adaptive US techniques, a history-dependent bias
potential that is progressively updated in order to flatten the
FES, eventually leading to a uniform sampling along the chosen
reaction coordinate. The novelty of our approach with respect
to standard US methods is the introduction of a history-
dependent bias potential that iscontinuouslyvaried during a
single simulation on the basis of “on the fly” evaluations of the

probability density function. The non-equilibrium probability
density of the biased sampling is indeed used to obtain, virtually
at every step of the simulation, a new estimate of the FES, thus
allowing a self-healing updating of the bias potential as the
simulation proceeds. Our non-equilibrium approach avoids
altogether the problem of connecting statistics collected in
independent equilibrium simulations, resulting in a parameter-
free, general, and highly efficient self-consistent algorithm.
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Supporting Information Available: (i) Demonstration that
the free energy estimated by the proposed algorithm converges
to the exact value. (ii) Technical details on the molecular
dynamics simulation of the alanine dipeptide. (iii) Free energy
surface of the alanine dipeptide as a function ofΦ and Ψ
calculated using a standard umbrella sampling method. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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Figure 2. Root-mean-square deviation of the estimated FES of the
alanine dipeptide from the reference FES (see Supporting Information).
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