Performing advanced MD simulations with ORAC

Giorgio F. Signorini Università di Firenze (IT)

2011, march 22 Cycle "Modélisation de Macromolécules Biologiques" Université di Cergy-Pontoise (FR)

ORAC

♦ ORAC rel 5.1

✤ Home Page

* References

ORAC is an open project

In practice

Examples

Tests

REM Tests

Steered MD Tests

ORAC

ORAC

♦ ORAC rel 5.1♦ Home Page

✤ References

ORAC is an open project

In practice

Examples

Tests

REM Tests

Steered MD Tests

ORAC is a program for running classical simulations of biomolecules at the atomistic level.

ORAC

♦ ORAC rel 5.1♦ Home Page

ReferencesORAC is an open

project

In practice

Examples

Tests

REM Tests

Steered MD Tests

ORAC is a program for running classical simulations of biomolecules at the atomistic level.

Simulations can be carried out in the NVE, NPT, NHP, and NVT thermodynamic ensembles.

ORAC

- ORAC rel 5.1Home Page
- References
- ORAC is an open project

In practice

Examples

Tests

REM Tests

Steered MD Tests

ORAC is a program for running classical simulations of biomolecules at the atomistic level.

- Simulations can be carried out in the NVE, NPT, NHP, and NVT thermodynamic ensembles.
- The integration of the equations of motion in any ensemble is carried out with the r-RESPA multiple time step integrator

ORAC

- ♦ ORAC rel 5.1♦ Home Page
- References
- ORAC is an open project

In practice

Examples

Tests REM Tests

Steered MD Tests

ORAC is a program for running classical simulations of biomolecules at the atomistic level.

- Simulations can be carried out in the NVE, NPT, NHP, and NVT thermodynamic ensembles.
 - The integration of the equations of motion in any ensemble is carried out with the r-RESPA multiple time step integrator
- electrostatic interactions can be handled with the Smooth Particle Mesh Ewald method

ORAC

- ORAC rel 5.1Home Page
- References
- ORAC is an open project

In practice

Examples

Tests REM Tests

Steered MD Tests

ORAC is a program for running classical simulations of biomolecules at the atomistic level.

- Simulations can be carried out in the NVE, NPT, NHP, and NVT thermodynamic ensembles.
- The integration of the equations of motion in any ensemble is carried out with the r-RESPA multiple time step integrator
- electrostatic interactions can be handled with the Smooth Particle Mesh Ewald method

In the latest release (5.1):

ORAC

- ORAC rel 5.1Home Page
- References
- ORAC is an open project

In practice

Examples

Tests REM Tests

Steered MD Tests

ORAC is a program for running classical simulations of biomolecules at the atomistic level.

- Simulations can be carried out in the NVE, NPT, NHP, and NVT thermodynamic ensembles.
- The integration of the equations of motion in any ensemble is carried out with the r-RESPA multiple time step integrator
- electrostatic interactions can be handled with the Smooth Particle Mesh Ewald method

In the latest release (5.1):

Replica Exchange MD

ORAC

- ORAC rel 5.1Home Page
- References
- ORAC is an open project

In practice

Examples

Tests REM Tests

Steered MD Tests

ORAC is a program for running classical simulations of biomolecules at the atomistic level.

- Simulations can be carried out in the NVE, NPT, NHP, and NVT thermodynamic ensembles.
- The integration of the equations of motion in any ensemble is carried out with the r-RESPA multiple time step integrator
- electrostatic interactions can be handled with the Smooth Particle Mesh Ewald method

In the latest release (5.1):

- Replica Exchange MD
- Steered MD

ORAC

- ORAC rel 5.1Home Page
- References
- ORAC is an open project

In practice

Examples

Tests REM Tests

Steered MD Tests

ORAC is a program for running classical simulations of biomolecules at the atomistic level.

- Simulations can be carried out in the NVE, NPT, NHP, and NVT thermodynamic ensembles.
- The integration of the equations of motion in any ensemble is carried out with the r-RESPA multiple time step integrator
- electrostatic interactions can be handled with the Smooth Particle Mesh Ewald method

In the latest release (5.1):

- Replica Exchange MD
- Steered MD
- Metadynamics

Home Page

ORAC

♦ ORAC rel 5.1

♦ Home Page

✤ References

ORAC is an open project

In practice

Examples

Tests

REM Tests

Steered MD Tests

Home page:

http://www.chim.unifi.it/orac

References

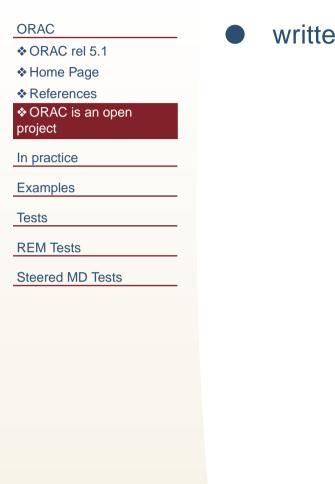
ORAC

ORAC rel 5.1

Home Page

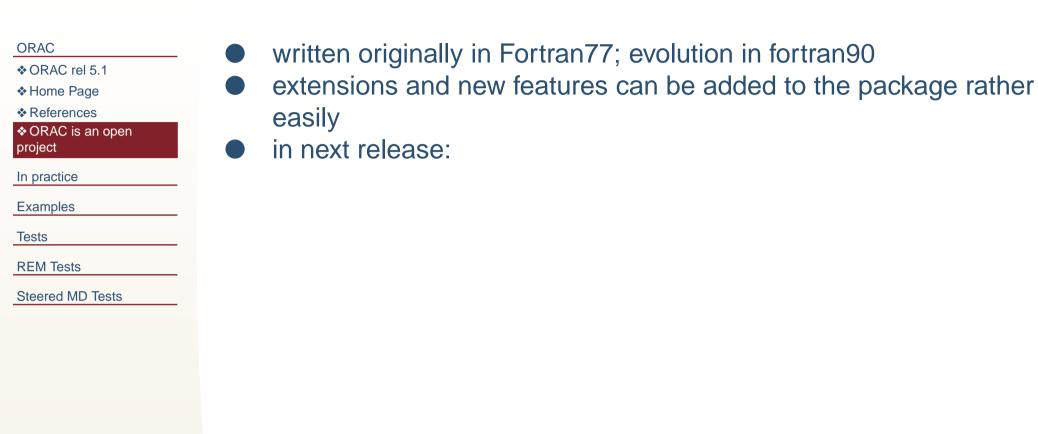
References

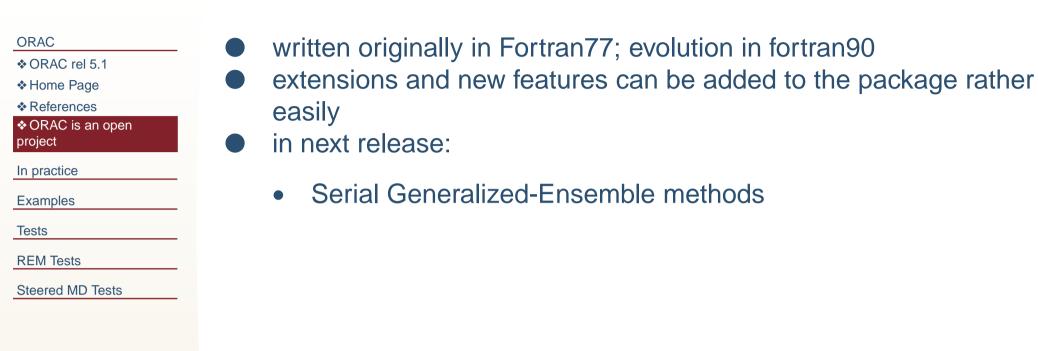
ORAC is an open project

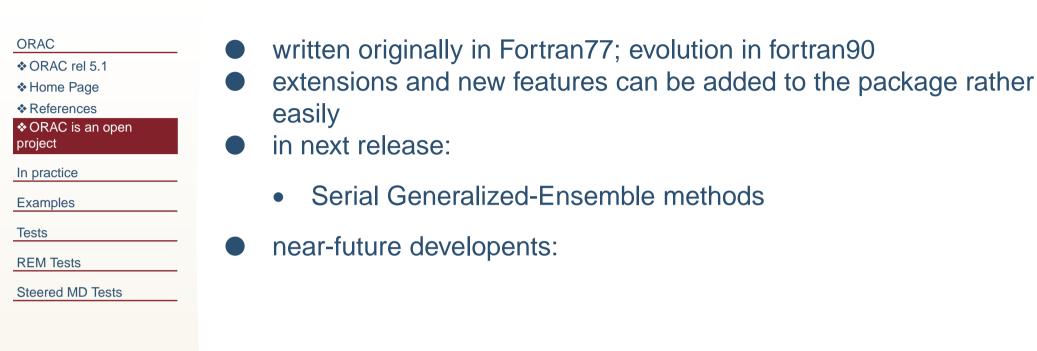

In practice

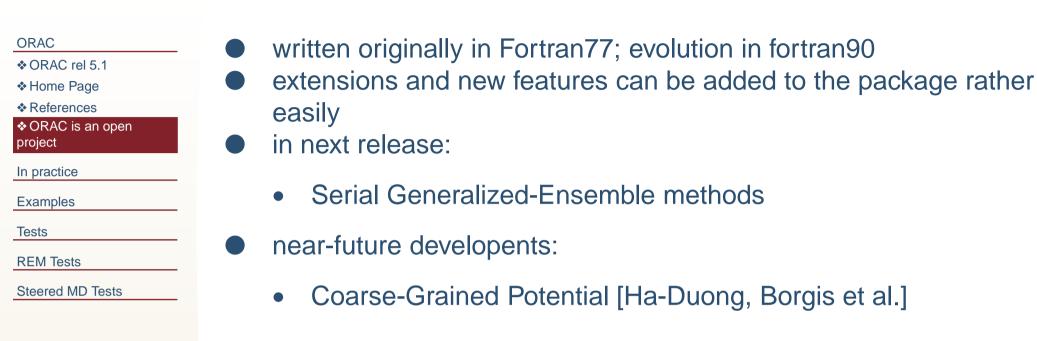
Examples

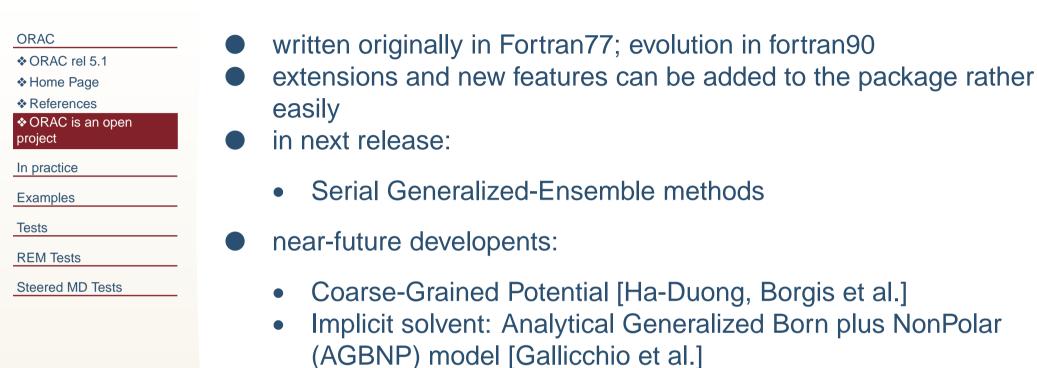
Tests

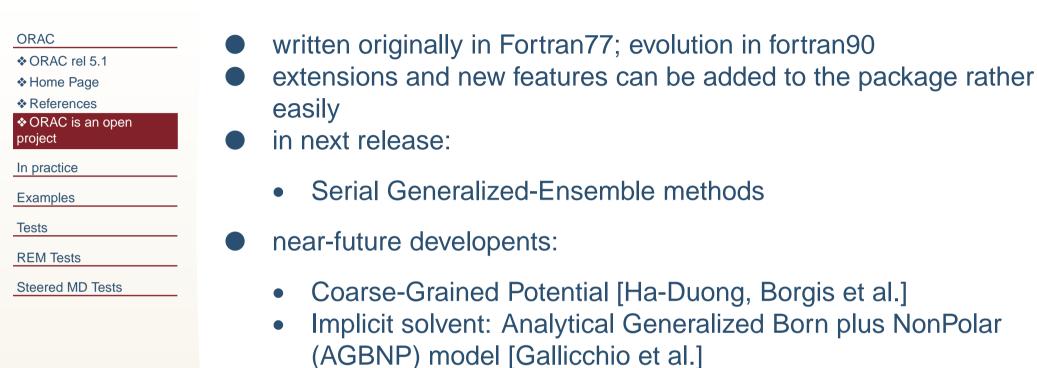

REM Tests


- P. Procacci, E. Paci, T. Darden, and M. Marchi. ORAC: A Molecular Dynamics Program to Simulate Complex Molecular Systems with Realistic Electrostatic Interactions. *J. Comput. Chem.*, 18:1848–1862, 1997.
- [2] S. Marsili, G. F. Signorini, R. Chelli, M. Marchi, and P. Procacci. ORAC: A molecular dynamics simulation program to explore free energy surfaces in biomolecular systems at the atomistic level. *J. Comput. Chem.*, 31:1106–1116, 2010.




written originally in Fortran77; evolution in fortran90


ORAC * ORAC rel 5.1 * Home Page * References * ORAC is an open project In practice Examples Tests REM Tests Steered MD Tests	 written originally in Fortran77; evolution in fortran90 extensions and new features can be added to the package rather easily



ORAC

In practice

- ♦ Be Unix!
- Anatomy of a distribution
- Compiling
- Input and Output files
- The main input file
- The main input file (2)
- The main output file
- Analysis of results

Examples

Tests

REM Tests

Steered MD Tests

In practice

ORAC

In practice

Be Unix!Anatomy of a

distribution

Compiling

Input and Output files

The main input file

The main input file (2)

The main output file

Analysis of results

Examples

Tests

REM Tests

Steered MD Tests

ORAC runs on UNIX systems only.

ORAC

In practice

♦ Be Unix!

 Anatomy of a distribution

Compiling

Input and Output files

The main input file

The main input file (2)

The main output file

Analysis of results

Examples

Tests

REM Tests

Steered MD Tests

ORAC runs on UNIX systems only.

Prerequisites:

ORAC

In practice

- ♦ Be Unix!
- Anatomy of a distribution
- Compiling
- Input and Output files
- The main input file
- The main input file (2)
- The main output file
- Analysis of results

Examples

Tests

REM Tests

- ORAC runs on UNIX systems only.
- Prerequisites:
 - GNU Make
 - GCC 4.3 or higher
 - other Fortran 90 compilers that are known to work:

ORAC

In practice

- ♦ Be Unix!
- Anatomy of a distribution
- Compiling
- Input and Output files
- The main input file
- The main input file (2)
- The main output file
- Analysis of results

Examples

Tests

- **REM Tests**
- Steered MD Tests

- ORAC runs on UNIX systems only.
- Prerequisites:
 - GNU Make
 - GCC 4.3 or higher
 - other Fortran 90 compilers that are known to work:
 - O Intel
 - O IBM xlf family
 - \mathbf{C}

(see file BUILDING)

. . .

ORAC

In practice

♦ Be Unix!

♦ Anatomy of a distribution

Compiling

Input and Output files

- The main input file
- The main input file (2)
- The main output file
- Analysis of results

Examples

Tests

REM Tests

- orac.5_1_1.rev257/
- -- BUILDING
- -- COPYRIGHT_NOTICE
- |-- Makefile
- -- README
- -- RELEASE
- -- doc/

ORAC

In practice

♦ Be Unix!

♦ Anatomy of a distribution

- Compiling
- Input and Output files
- The main input file
- The main input file (2)
- The main output file
- Analysis of results

Examples

Tests

REM Tests

- |-- BUILDING
- -- COPYRIGHT_NOTICE
- |-- Makefile
- -- README
- |-- RELEASE
- -- doc/ # The manual

ORAC

In practice

♦ Be Unix!

♦ Anatomy of a distribution

- Compiling
- Input and Output files
- The main input file
- The main input file (2)
- The main output file
- Analysis of results

Examples

Tests

REM Tests

- -- BUILDING
- -- COPYRIGHT_NOTICE
- |-- Makefile
- -- README
- |-- RELEASE
- -- doc/ # The manual
- |-- lib/

ORAC

In practice

♦ Be Unix!

Anatomy of a distribution

- Compiling
- Input and Output files
- The main input file
- The main input file (2)
- The main output file
- Analysis of results

Examples

Tests

REM Tests

orac.5_1_1.rev257/			
	BUILDING		
	COPYRIGHT_NOTICE		
1	N/-1		

- |-- Makefile
- -- README
- |-- RELEASE
- -- doc/ # The manual
 - -- lib/ # Force Field (Parameter and Topology files)

In practice

♦ Be Unix!

Anatomy of a distribution

- Compiling
- Input and Output files
- The main input file
- The main input file (2)
- The main output file
- Analysis of results

Examples

Tests

REM Tests

orac.5_1_1.rev257/	

- |-- BUILDING
- -- COPYRIGHT_NOTICE
- |-- Makefile
- -- README
- |-- RELEASE
- -- doc/ # The manual
- -- lib/ # Force Field (Parameter and Topology files)
- |-- pdb/

0	F	R/	4	C

In practice

- ♦ Be Unix!
- Anatomy of a distribution
- Compiling
- Input and Output files
- The main input file
- The main input file (2)
- The main output file
- Analysis of results

Examples

Tests

REM Tests

orac	5	1	1.rev257/	
OT GC	• •	_		

- |-- BUILDING
- -- COPYRIGHT_NOTICE
- |-- Makefile
- -- README
- |-- RELEASE
 - -- doc/ # The manual
 - -- lib/ # Force Field (Parameter and Topology files)
- -- pdb/ # Input Molecular Structures

ORAC	
In practice	orac.5_1_1.rev257/
	BUILDING
✤ Be Unix!	
Anatomy of a distribution	COPYRIGHT_NOTICE
	Makefile
Compiling	README
Input and Output files	
The main input file	RELEASE
The main input file (2)	doc/ # The manual
The main output file	lib/ # Force Field (Parameter and Topology files)
Analysis of results	- pdb/ # Input Molecular Structures
Examples	src/

Tests

REM Tests

ORAC	
In practice	orac.5_1_1.rev257/ BUILDING COPYRIGHT_NOTICE Makefile
 Compiling Input and Output files The main input file 	README RELEASE
The main input file (2)	doc/ # The manual
The main output file	lib/ # Force Field (Parameter and Topology files)
Analysis of results	pdb/
Examples	src/ # Program Sources; also, executable after compilation
—	

Tests

REM Tests

ORAC	
In practice	orac.5_1_1.rev257/
♦ Be Unix!	BUILDING
♦ Anatomy of a	COPYRIGHT_NOTICE
distribution	Makefile
Compiling	
Input and Output files	README
The main input file	RELEASE
The main input file (2)	doc/ # The manual
The main output file	lib/ # Force Field (Parameter and Topology files)
Analysis of results	pdb/
Examples	src/ # Program Sources; also, executable after compilation
Tests	tests/

REM Tests

ORAC	
In practice	orac.5_1_1.rev257/
♦ Be Unix!	BUILDING
♦ Anatomy of a	COPYRIGHT_NOTICE
distribution	Makefile
Compiling	README
Input and Output files	
The main input file	RELEASE
The main input file (2)	doc/ # The manual
The main output file	lib/ # Force Field (Parameter and Topology files)
Analysis of results	pdb/ # Input Molecular Structures
Examples	src/ # Program Sources; also, executable after compilation
Tests	tests/ # Tests (more on those later)

REM Tests

ORAC	
	orac.5_1_1.rev257/
In practice	BUILDING
♦ Be Unix!	
♦ Anatomy of a	COPYRIGHT_NOTICE
distribution	Makefile
Compiling	
Input and Output files	README
	RELEASE
The main input file	
The main input file (2)	doc/ # The manual
The main output file	lib/ # Force Field (Parameter and Topology files)
Analysis of results	pdb/
Examples	
Examples	src/ # Program Sources; also, executable after compilation
Tests	tests/ # Tests (more on those later)
	` tools/
REM Tests	

Anatomy of a distribution

ORAC	
In practice	orac.5_1_1.rev257/ BUILDING
 Be Unix! Anatomy of a 	COPYRIGHT_NOTICE
distribution	Makefile
 Input and Output files The main input file 	README RELEASE
 The main input file The main input file (2) 	doc/ # The manual
 The main output file Analysis of recults 	lib/ # Force Field (Parameter and Topology files)
 Analysis of results Examples 	pdb/ # Input Molecular Structures
Tests	<pre> src/ # Program Sources; also, executable after compilation tests/ # Tests (more on those later)</pre>
REM Tests	' tools/ # auxiliary programs

Anatomy of a distribution

ORAC	
In practice	orac.5_1_1.rev257/
♣ Be Unix!	BUILDING
♦ Anatomy of a	COPYRIGHT_NOTICE
distribution	Makefile
Compiling	README
Input and Output files	
The main input file	RELEASE
The main input file (2)	doc/ # The manual
The main output file	lib/ # Force Field (Parameter and Topology files)
Analysis of results	pdb/ # Input Molecular Structures
Examples	src/ # Program Sources; also, executable after compilation
Tests	tests/ # Tests (more on those later)
REM Tests	<pre>` tools/ # auxiliary programs</pre>
Steered MD Tests	

Look for README files in each directory for help!

ORAC

In practice

♦ Be Unix!

 Anatomy of a distribution

Compiling

Input and Output files

✤ The main input file

The main input file (2)

The main output file

Analysis of results

Examples

Tests

REM Tests

Steered MD Tests

to list all available compilation targets:

ORAC

In practice

♦ Be Unix!

Anatomy of a distribution

Compiling

Input and Output files

The main input file

The main input file (2)

The main output file

Analysis of results

Examples

Tests

REM Tests

Steered MD Tests

to list all available compilation targets:

\$ cd orac-5_1_x \$ make show

ORAC

In practice

♦ Be Unix!

Anatomy of a distribution

Compiling

Input and Output files

✤ The main input file

The main input file (2)

The main output file

Analysis of results

Examples

Tests

REM Tests

Steered MD Tests

to list all available compilation targets:

\$ cd orac-5_1_x
\$ make show
AVAILABLE COMPILATION TARGETS:
 default
 gfortran
 Intel
 IBM
 ...
 PARALLEL
 gfortran_PARALLEL
 IBM_PARALLEL

|--|

In practice

✤ Be Unix!

Anatomy of a distribution

Compiling

Input and Output files

The main input file

The main input file (2)

The main output file

Analysis of results

Examples

Tests

REM Tests

Steered MD Tests

to list all available compilation targets:

\$ cd orac-5_1_x
\$ make show
AVAILABLE COMPILATION TARGETS:
 default
 gfortran
 Intel
 IBM
 ...
 PARALLEL
 gfortran_PARALLEL
 Intel_PARALLEL
 IBM_PARALLEL
 ...

to create the executable orac_XXXXX in directory src/default:

ORAC

In practice

✤ Be Unix!

Anatomy of a distribution

Compiling

Input and Output files

The main input file

The main input file (2)

The main output file

Analysis of results

Examples

Tests

REM Tests

Steered MD Tests

to list all available compilation targets:

\$ cd orac-5_1_x
\$ make show
AVAILABLE COMPILATION TARGETS:
 default
 gfortran
 Intel
 IBM
 ...
 PARALLEL
 gfortran_PARALLEL
 Intel_PARALLEL
 IBM_PARALLEL
 ...

to create the executable orac_XXXXX in directory src/default:

\$ make default

0	R	AC

In practice

✤ Be Unix!

Anatomy of a distribution

Compiling

Input and Output files

The main input file

The main input file (2)

The main output file

Analysis of results

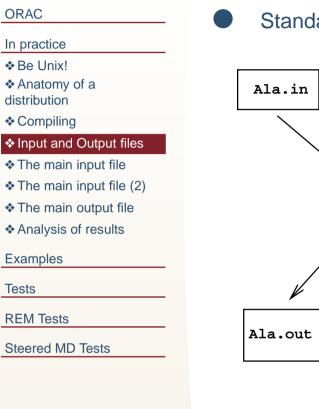
Examples

Tests

REM Tests

Steered MD Tests

to list all available compilation targets:

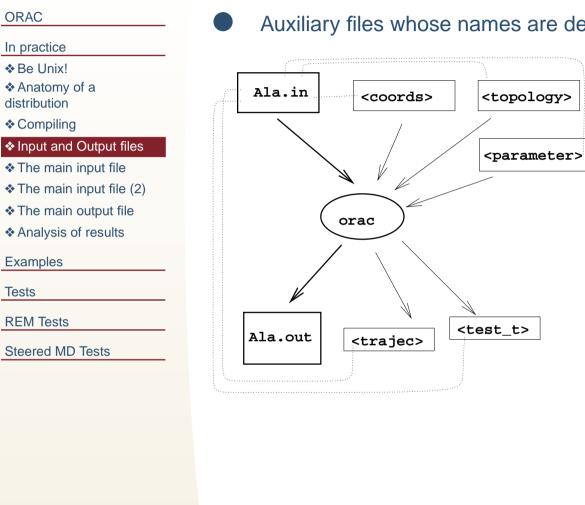

\$ cd orac-5_1_x
\$ make show
AVAILABLE COMPILATION TARGETS:
 default
 gfortran
 Intel
 IBM
 ...
 PARALLEL
 gfortran_PARALLEL
 Intel_PARALLEL
 IBM_PARALLEL
 ...

to create the executable orac_XXXXX in directory src/default:

\$ make default

edit src/config.H and recompile, to change maximum array dimensions

Input and Output files



Standard input and standard output:

orac < Ala.in > Ala.out

orac

Input and Output files

Auxiliary files whose names are defined in main input:

orac < Ala.in > Ala.out

ORAC

- In practice
- ♦ Be Unix!
- Anatomy of a distribution
- Compiling
- Input and Output files

The main input file

- The main input file (2)
- The main output file
- Analysis of results

Examples

Tests

REM Tests

- The main input file has a block structure
 - each block begins with &KEYWORD and ends with &END

ORAC

- In practice
- ♦ Be Unix!
- Anatomy of a
- distribution
- Compiling
- Input and Output files

The main input file

- The main input file (2)
- The main output file
- Analysis of results

Examples

Tests

REM Tests

- The main input file has a block structure
 - each block begins with &KEYWORD and ends with &END
- Block order does not matter All the input is read first; then the required computations are started

ORAC &SETUP In practice CRYSTAL 62.0 62.0 62.0 90.0 90.0 90.0 ♦ Be Unix! READ_PDB ../../pdb/glc.pdb Anatomy of a &END distribution Compiling Input and Output files ✤ The main input file ♦ The main input file (2) The main output file Analysis of results Examples Tests **REM Tests**

ORAC

In practice

♦ Be Unix!

Anatomy of a distribution

Compiling

Input and Output files

✤ The main input file

The main input file (2)

The main output file

Analysis of results

Examples

Tests

REM Tests

Steered MD Tests

CRYSTAL 62.0 62.0 62.0 90.0 90.0 90.0 READ_PDB ../../pdb/glc.pdb &END

&PARAMETERS

&SETUP

READ_TPG_ASCII ../../lib/amber03.tpg READ_PRM_ASCII ../../lib/amber03.prm JOIN SOLUTE glc END &END

ORAC

In practice Be Unix! Anatomy of a distribution

Compiling

Input and Output files

✤ The main input file

The main input file (2)

The main output file

Analysis of results

```
Examples
```

Tests

REM Tests

&SETUP CRYSTAL 62.0 62.0 62.0 90.0 90.0 90.0 READ_PDB//pdb/glc.pdb &END
&PARAMETERS READ_TPG_ASCII//lib/amber03.tpg READ_PRM_ASCII//lib/amber03.prm JOIN SOLUTE glc END &END
&POTENTIAL CUTOFF 12.0 STRETCHING UPDATE 10.0 2.0 &END
&SIMULATION MINIMIZE CG 0.00001 END FREQUENCIES print OPEN glc.frq END &END
&RUN PRINT 10.0 TIME 1000.0 &END

ORAC

In practice Be Unix! Anatomy of a distribution

Compiling

Input and Output files

✤ The main input file

The main input file (2)

✤ The main output file

Analysis of results

```
Examples
```

Tests

REM Tests

Steered MD Tests

&SETUP CRYSTAL 62.0 62.0 62.0 90.0 90.0 90.0 READ_PDB//pdb/glc.pdb &END
&PARAMETERS READ_TPG_ASCII//lib/amber03.tpg READ_PRM_ASCII//lib/amber03.prm JOIN SOLUTE glc END &END
&POTENTIAL CUTOFF 12.0 STRETCHING UPDATE 10.0 2.0 &END
&SIMULATION MINIMIZE CG 0.00001 END FREQUENCIES print OPEN glc.frq END &END
&RUN PRINT 10.0 TIME 1000.0 &END

See section "Input to ORAC" in the manual for detailed description of input

ORAC

In practice

♦ Be Unix!

Anatomy of a distribution

Compiling

Input and Output files

The main input file

The main input file (2)

The main output file

Analysis of results

Examples

Tests

REM Tests

Steered MD Tests

1. a copy of the input

ORAC

- In practice
- ♦ Be Unix!
- Anatomy of a distribution
- Compiling
- Input and Output files
- The main input file
- The main input file (2)

The main output file

Analysis of results

Examples

Tests

REM Tests

- 1. a copy of the input
- 2. output from startup operations (reading files, setup box, ...)

ORAC

- In practice
- ♦ Be Unix!
- Anatomy of a distribution
- Compiling
- Input and Output files
- The main input file
- The main input file (2)
- The main output file
- Analysis of results
- Examples
- Tests
- **REM Tests**
- Steered MD Tests

- 1. a copy of the input
- 2. output from startup operations (reading files, setup box, ...)
- 3. intermediate simulation results:

ORAC

- In practice
- ✤ Be Unix!
- Anatomy of a distribution
- Compiling
- Input and Output files
- The main input file
- ✤ The main input file (2)
- The main output file
- Analysis of results
- Examples

Tests

- **REM Tests**
- Steered MD Tests

- 1. a copy of the input
- 2. output from startup operations (reading files, setup box, ...)
- 3. intermediate simulation results:

```
Tstep = 60.0 Total = -2889.889 TotPot = -8624.839
Coulomb = -14817.630 Recipr = -8874.305 NonBond = -15058.432
Ener14 = 1285.083 Bonded = 6433.593 Stretch = 2125.946
Angle = 1728.847 I-Tors = 88.797 P-Tors = 2490.003
TotTemp = 328.854 Hoover = 54.3 ResTemp = 323.494
TraTemp = 367.831
<----- Dumping Restart File ----->
Neighbor Lists Dimensions *neighbor( 36855)*
Tstep = 72.0 Total = -2918.812 TotPot = -8891.027
Coulomb = -15052.095 Recipr = -9031.840 NonBond = -15282.772
Ener14 = 1264.188 Bonded = 6391.744 Stretch = 2014.560
Angle = 1780.318 I-Tors = 107.506 P-Tors = 2489.360
```

TotTemp = 342.152 Hoover = 157.6 ResTemp = 333.165 TraTemp = 407.513

Velocities have been rescaled ---->

Analysis of results

ORAC

In practice

- ♦ Be Unix!
- Anatomy of a
- distribution
- Compiling
- Input and Output files
- The main input file
- The main input file (2)
- The main output file

Analysis of results

Examples

Tests

REM Tests

- use tools:
 - orac-post-proc
 - analysis
 - rmsd90

ORAC

In practice

Examples

♦ A basic example

plot selected properties
 from output

\$ compute structural
properties with analysis

compute structural
 properties with analysis
 (2)

Tests

REM Tests

Steered MD Tests

Examples

A basic example

In practice

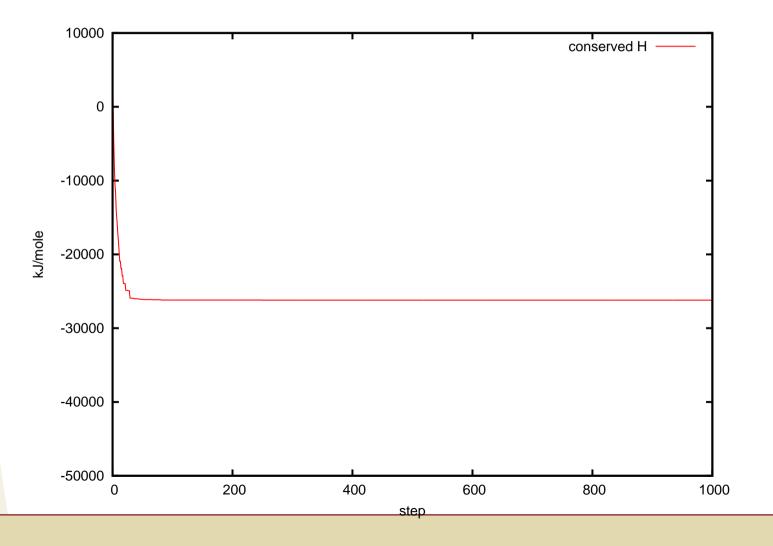
Examples

♦ A basic example

plot selected properties from output

compute structural
 properties with analysis

\$ compute structural
properties with analysis
(2)


Tests

REM Tests

Steered MD Tests

NpT simulation of a small protein in water, with initial equilibration

A basic example

ORAC

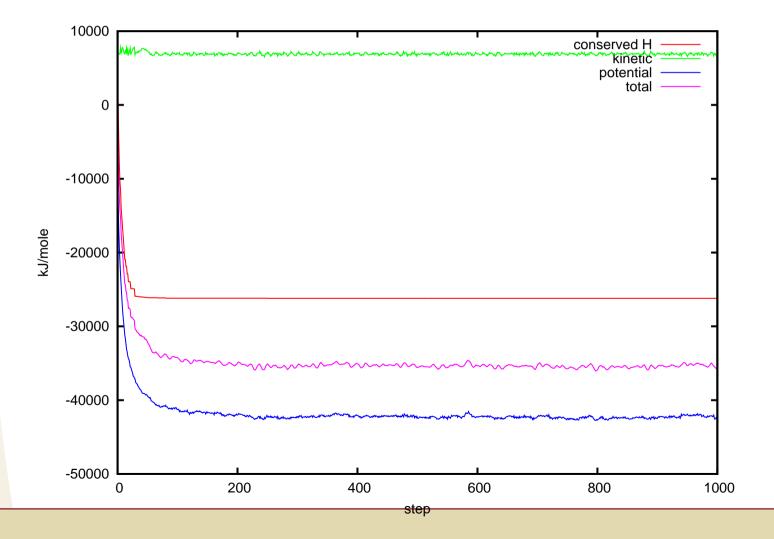
In practice

Examples

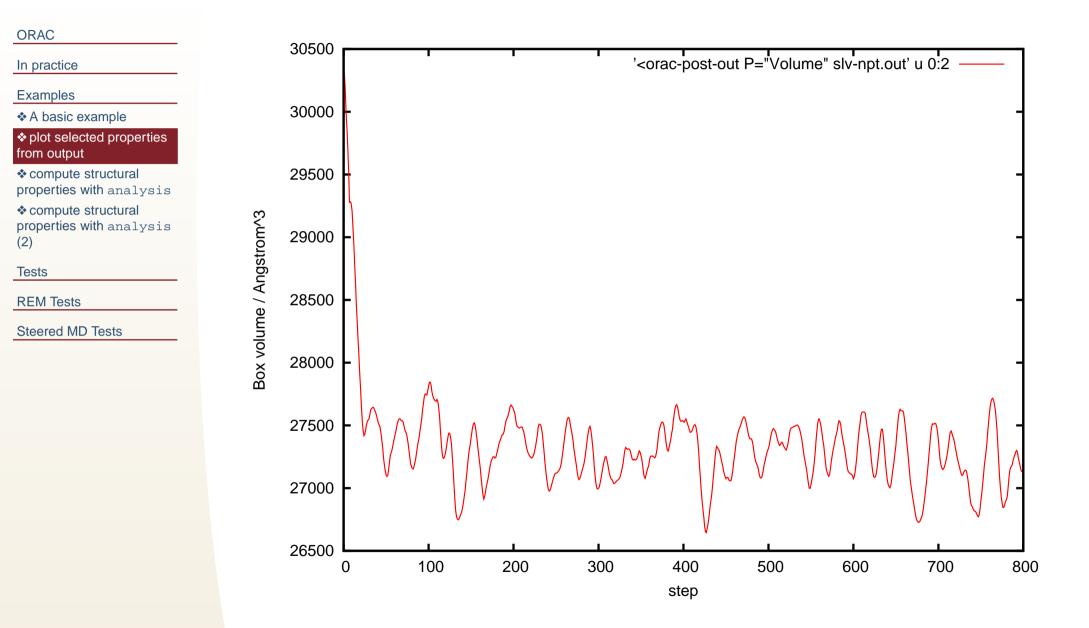
✤ A basic example

plot selected properties
 from output

\$ compute structural
properties with analysis


\$ compute structural
properties with analysis
(2)

Tests


REM Tests

Steered MD Tests

NpT simulation of a small protein in water, with initial equilibration
Energies of the real system:

plot selected properties from output

compute structural properties with analysis

ORAC

In practice

Examples

♦ A basic example

plot selected properties from output

compute structural properties with analysis

\$ compute structural
properties with analysis
(2)

Tests

REM Tests

Steered MD Tests

analysis is a small, extensible auxiliary program to compute structural properties from PDB trajectory:

\$ analysis < ana.in

compute structural properties with analysis

ORAC

In practice

Examples

♦ A basic example

plot selected properties
 from output

\$ compute structural
properties with analysis

\$ compute structural
properties with analysis
(2)

Tests

REM Tests

Steered MD Tests

analysis is a small, extensible auxiliary program to compute structural properties from PDB trajectory:

\$ analysis < ana.in</pre>

The file ana.in looks like the following:

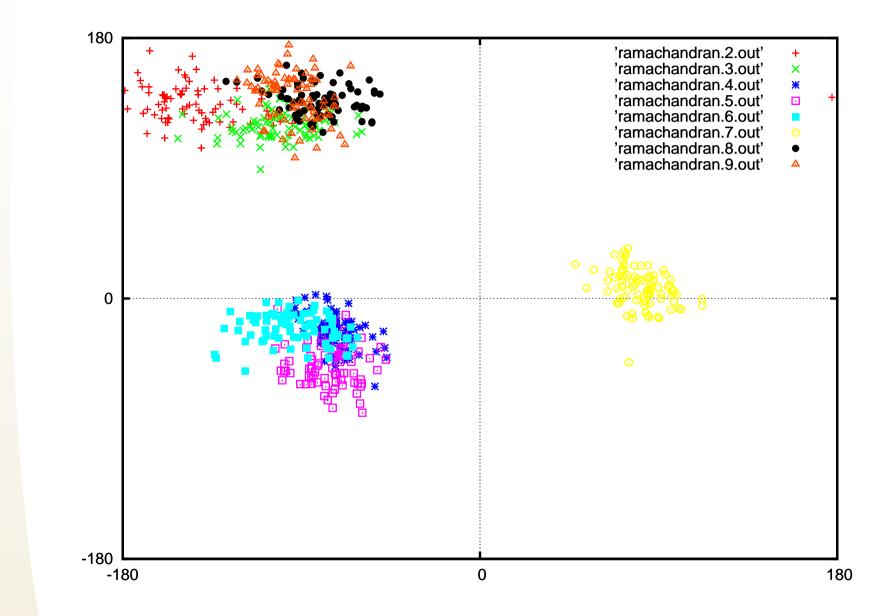
compute structural properties with analysis (2)

ORAC

In practice

Examples

♦ A basic example


plot selected properties from output

compute structural
 properties with analysis

compute structural
 properties with analysis
 (2)

Tests

REM Tests

ORAC

In practice

Examples

Tests ♦ ORAC tests

✤ You need to go parallel

Is this what you expected?

REM Tests

Steered MD Tests

Tests

ORAC

In practice

Examples

Tests ♦ ORAC tests

✤ You need to go parallel

Is this what you expected?

REM Tests

Steered MD Tests

The ORAC distribution includes a test suite for each functionality:basic

ORAC

In practice

Examples

Tests ♦ ORAC tests

✤ You need to go parallel

Is this what you expected?

REM Tests

Steered MD Tests

The ORAC distribution includes a test suite for each functionality:

basic

Replica Exchange MD

OIGAO

In practice

Examples

Tests

♦ ORAC tests

✤ You need to go parallel

Is this what you expected?

REM Tests

Steered MD Tests

The ORAC distribution includes a test suite for each functionality:

- basic
- Replica Exchange MD
- Steered MD

ORAC	2
------	---

In practice

Examples

Tests

♦ ORAC tests

✤ You need to go parallel

Is this what you expected?

REM Tests

Steered MD Tests

The ORAC distribution includes a test suite for each functionality:

- basic
- Replica Exchange MD
- Steered MD
- Metadynamics

UNAC

In practice

Examples

Tests

♦ ORAC tests

✤ You need to go parallel

Is this what you expected?

REM Tests

Steered MD Tests

The ORAC distribution includes a test suite for each functionality:

- basic
- Replica Exchange MD
- Steered MD
- Metadynamics

ORAC tests serve two purposes:

0	RA	С

In practice

Examples

Tests

♦ ORAC tests

✤ You need to go parallel

Is this what you expected?

REM Tests

Steered MD Tests

The ORAC distribution includes a test suite for each functionality:

- basic
- Replica Exchange MD
- Steered MD
- Metadynamics

ORAC tests serve two purposes:

check if the function is working and produces the expected results

ORAC

In practice

Examples

Tests ♦ ORAC tests

✤ You need to go parallel

Is this what you expected?

REM Tests

Steered MD Tests

The ORAC distribution includes a test suite for each functionality:

- basic
- Replica Exchange MD
- Steered MD
- Metadynamics

ORAC tests serve two purposes:

check if the function is working and produces the expected resultsprovide sample input files

ORAC tests

ORAC

In practice

Examples

Tests ♦ ORAC tests

You need to go parallel

Is this what you expected?

REM Tests

Steered MD Tests

The ORAC distribution includes a test suite for each functionality:

- basic
- Replica Exchange MD
- Steered MD
- Metadynamics

ORAC tests serve two purposes:

check if the function is working and produces the expected results
provide sample input files

Tests are designed to be very short! no real-world calculation!

ORAC

In practice

Examples

Tests

♦ ORAC tests

✤ You need to go parallel

Is this what you expected?

REM Tests

Steered MD Tests

Some of the tests run in parallel. This means you will need

ORAC
In practice
Examples
Tests

♦ ORAC tests

✤ You need to go parallel

Is this what you expected?

REM Tests

Steered MD Tests

Some of the tests run in parallel. This means you will need

1. to set up an MPI parallel environment, such as OpenMPI or MPICH2. For example, in ubuntu:

\$ sudo apt-get install mpich2

ORAC	Som
In practice	
Examples	1.
Tests	
ORAC tests	
✤ You need to go parallel	
Is this what you expected?	
REM Tests	

Steered MD Tests

ne of the tests run in parallel. This means you will need

to set up an MPI parallel environment, such as OpenMPI or MPICH2. For example, in ubuntu:

\$ sudo apt-get install mpich2

then configure it (see README_PARALLEL files, and http://www.mcs.anl.gov/research/projects/mpich2)

ORAC	S
In practice	
Examples	1.
Tests	
♦ ORAC tests	
♦ You need to go parallel	
Is this what you expected?	
REM Tests	

Steered MD Tests

ome of the tests run in parallel. This means you will need

to set up an MPI parallel environment, such as OpenMPI or MPICH2. For example, in ubuntu:

\$ sudo apt-get install mpich2

then configure it (see README PARALLEL files, and http://www.mcs.anl.gov/research/projects/mpich2)

to build the parallel version of the program, e.g.: 2.

> cd orac-5_1_x/ \$ make PARALLEL Ŝ

ORAC
In practice
Examples
Tests
ORAC tests
You need to go parallel
✤ Is this what you expected?

REM Tests

Steered MD Tests

at the end of each test, you may find that the output is different from the reference data listed in the package

ORAC	
In practice	
Examples	
Tests	
♦ ORAC tests	
You need to go parallel	
Is this what you expected?	
REM Tests	

Steered MD Tests

at the end of each test, you may find that the output is different from the reference data listed in the package

this is not necessarily an error:

ORAC In practice Examples Tests * ORAC tests * You need to go parallel * Is this what you expected? REM Tests

Steered MD Tests

- at the end of each test, you may find that the output is different from the reference data listed in the package
- this is not necessarily an error:
 - the evolution of a REM simulation, or of a steered MD trajectory, depend critically on random number generators, that may work differently in your hw/sw environment, soon driving your simulation away from the reference one.

ORAC In practice Examples Tests ORAC tests ORAC tests You need to go parallel Is this what you expected?

REM Tests

Steered MD Tests

at the end of each test, you may find that the output is different from the reference data listed in the package

this is not necessarily an error:

- the evolution of a REM simulation, or of a steered MD trajectory, depend critically on random number generators, that may work differently in your hw/sw environment, soon driving your simulation away from the reference one.
- just check that results are reasonable and similar to what is expected

ORAC

In practice

Examples

Tests

REM Tests

Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

Run the test

♦ What's in a PARxxxx

output to terminal

exchange chart

total energy

collecting data for the target potential

how to reorder data by replica

✤ REM efficiency

monitoring trajectory flow

monitoring trajectory
 flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension

REM Tests

Steered MD Tests

ORAC	Hamiltonian Replica Exchange MD is implemented in ORAC
In practice	riamiterian replica Exenange me le implemente a morrie
Examples	
Tests	
REM Tests	
♦ Hamiltonian REM	
♦ A simple REM example	
✤ input file 1.in	
Run the test	
♦ What's in a PARxxxx	
♦ output to terminal	
♦ exchange chart	
✤ total energy	
collecting data for the target potential	
how to reorder data by replica	
♦ REM efficiency	
monitoring trajectory flow	
monitoring trajectory flow (2)	
HREM with potential partitioning	
HREM with potential partitioning (2)	
Solute Tempering extension	
Steered MD Tests	

ORAC

In practice

Examples

Tests

REM Tests

Hamiltonian REM

- ♦ A simple REM example
- ♦ input file 1.in
- Run the test
- What's in a PARxxxx
- output to terminal
- exchange chart
- total energy
- collecting data for the target potential
- how to reorder data by replica
- REM efficiency
- monitoring trajectory flow
- monitoring trajectory
 flow (2)
- HREM with potential partitioning
- HREM with potential partitioning (2)

 Solute Tempering extension Hamiltonian Replica Exchange MD is implemented in ORAC

N copies of the system are simulated, with potential scaling coefficients

$$c_1 = 1, c_2, \ldots, c_N$$

ORAC

In practice

Examples

Tests

REM Tests

Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

Run the test

What's in a PARxxxx

output to terminal

exchange chart

total energy

 collecting data for the target potential

how to reorder data by replica

♦ REM efficiency

 monitoring trajectory flow

monitoring trajectory flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension Hamiltonian Replica Exchange MD is implemented in ORAC

N copies of the system are simulated, with potential scaling coefficients

$$c_1 = 1, c_2, \ldots, c_N$$

and exchanges between adjacent copies are attempted at definite intervals

ORAC

In practice

Examples

Tests

REM Tests

Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

Run the test

What's in a PARxxxx

output to terminal

exchange chart

total energy

 collecting data for the target potential

how to reorder data by replica

♦ REM efficiency

 monitoring trajectory flow

monitoring trajectory flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension Hamiltonian Replica Exchange MD is implemented in ORAC

N copies of the system are simulated, with potential scaling coefficients

$$c_1 = 1, c_2, \ldots, c_N$$

and exchanges between adjacent copies are attempted at definite intervals

In what follows:

ORAC

In practice

Examples

Tests

REM Tests

Hamiltonian REM

- ♦ A simple REM example
- ♦ input file 1.in
- Run the test
- What's in a PARxxxx
- output to terminal
- exchange chart
- total energy
- collecting data for the target potential
- how to reorder data by replica
- ♦ REM efficiency

 monitoring trajectory flow

monitoring trajectory
 flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension Hamiltonian Replica Exchange MD is implemented in ORAC

N copies of the system are simulated, with potential scaling coefficients

$$c_1 = 1, c_2, \ldots, c_N$$

and exchanges between adjacent copies are attempted at definite intervals

- In what follows:
 - "replica" or "temperature" designates one value of the scaled potential

ORAC

In practice

Examples

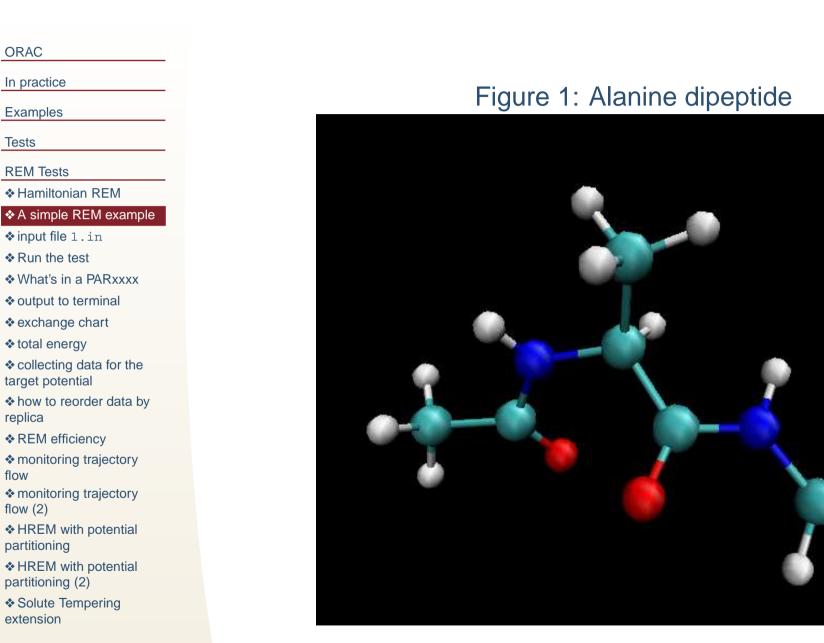
Tests

REM Tests

Hamiltonian REM

- ✤ A simple REM example
- ♦ input file 1.in
- Run the test
- What's in a PARxxxx
- output to terminal
- exchange chart
- total energy
- collecting data for the target potential
- how to reorder data by replica
- ♦ REM efficiency
- monitoring trajectory flow
- monitoring trajectory
 flow (2)
- HREM with potential partitioning
- HREM with potential partitioning (2)

 Solute Tempering extension Hamiltonian Replica Exchange MD is implemented in ORAC


N copies of the system are simulated, with potential scaling coefficients

$$c_1 = 1, c_2, \ldots, c_N$$

and exchanges between adjacent copies are attempted at definite intervals

- In what follows:
 - "replica" or "temperature" designates one value of the scaled potential
 - "trajectory" designates one simulation:
 "one trajectory explores different temperatures"

A simple REM example

ORAC

In practice

Examples

REM Tests

Tests

replica

flow

flow (2)

partitioning

extension

input file 1.in

ORAC

In practice

Examples

Tests

REM Tests

Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

Run the test

♦ What's in a PARxxxx

output to terminal

exchange chart

total energy

 collecting data for the target potential

how to reorder data by replica

♦ REM efficiency

 monitoring trajectory flow

monitoring trajectory flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension REM Test n.1: run a cold start of Alanine dipeptide, on 8 processors.

&REM		
SETUP 0.75 1		
STEP 5.		
PRINT 1000.		
&END		

This will run a REMD simulation with replicas having a scaling coefficient going from 1 to 0.75, (equivalent to temperature going from *T* to $\frac{T}{0.75}$), attempting a swap every 5.*fs*

Steered MD Tests

ORAC

In practice

Examples

Tests

REM Tests

Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

Run the test

♦ What's in a PARxxxx

output to terminal

exchange chart

total energy

collecting data for the target potential

how to reorder data by replica

♦ REM efficiency

monitoring trajectory flow

monitoring trajectory
 flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension

Steered MD Tests

(Before actually running the tests, you may need some tweaking of the Makefile in that directory, e.g. setting O_BIN_P to a different path for the parallel executable).

\$ cd orac-5_1_x/tests/REM_tests

|--|

In practice

Examples

Tests

REM Tests

Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

Run the test

What's in a PARxxxx

output to terminal

exchange chart

total energy

collecting data for the target potential

how to reorder data by replica

REM efficiency

 monitoring trajectory flow

monitoring trajectory
 flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension

Steered MD Tests

(Before actually running the tests, you may need some tweaking of the Makefile in that directory, e.g. setting O_BIN_P to a different path for the parallel executable).

\$ cd orac-5_1_x/tests/REM_tests
\$ # possibly edit Makefile

ORAC

In practice

Examples

Tests

REM Tests

Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

Run the test

What's in a PARxxxx

output to terminal

exchange chart

total energy

 collecting data for the target potential

how to reorder data by replica

♦ REM efficiency

 monitoring trajectory flow

monitoring trajectory
 flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension

Steered MD Tests

(Before actually running the tests, you may need some tweaking of the Makefile in that directory, e.g. setting O_BIN_P to a different path for the parallel executable).

\$ cd orac-5_1_x/tests/REM_tests
\$ # possibly edit Makefile
\$ make test1

ORAC

In practice

Examples

Tests

REM Tests

✤ Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

✤ Run the test

What's in a PARxxxx

♦ output to terminal

exchange chart

total energy

collecting data for the target potential

how to reorder data by replica

♦ REM efficiency

 monitoring trajectory flow

monitoring trajectory
 flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension

Steered MD Tests

(Before actually running the tests, you may need some tweaking of the Makefile in that directory, e.g. setting O_BIN_P to a different path for the parallel executable).

```
$ cd orac-5_1_x/tests/REM_tests
$ # possibly edit Makefile
$ make test1
Starting test 1...
mpiexec -n 8 ../../src/PARALLEL/orac_Linux < 1.in</pre>
```

ORAC

In practice

Examples

Tests

REM Tests

✤ Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

Run the test

What's in a PARxxxx

output to terminal

exchange chart

total energy

collecting data for the target potential

how to reorder data by replica

♦ REM efficiency

 monitoring trajectory flow

monitoring trajectory
 flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension

Steered MD Tests

(Before actually running the tests, you may need some tweaking of the Makefile in that directory, e.g. setting O_BIN_P to a different path for the parallel executable).

```
$ cd orac-5_1_x/tests/REM_tests
$ # possibly edit Makefile
$ make test1
Starting test 1...
mpiexec -n 8 ../../src/PARALLEL/orac_Linux < 1.in</pre>
```

NOTE that the number of processes is given as argument to mpiexec

ORAC

In practice

Examples

Tests

REM Tests

✤ Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

Run the test

What's in a PARxxxx

output to terminal

exchange chart

total energy

 collecting data for the target potential

how to reorder data by replica

REM efficiency

 monitoring trajectory flow

 monitoring trajectory flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension (Before actually running the tests, you may need some tweaking of the Makefile in that directory, e.g. setting O_BIN_P to a different path for the parallel executable).

```
$ cd orac-5_1_x/tests/REM_tests
$ # possibly edit Makefile
$ make test1
Starting test 1...
mpiexec -n 8 ../../src/PARALLEL/orac_Linux < 1.in</pre>
```

NOTE that the number of processes is given as argument to mpiexec Each trajectory (process) outputs to a separate directory:

REM_tests/			
PAR0000/			
PAR0001/			
PAR0002/			
PAR0003/			
PAR0004/			
PAR0005/			
PAR0006/			
' PAR0007/			

Steered MD Tests

What's in a PARxxxx

ORAC In practice Examples	In ea A us
Tests REM Tests	Time(f 0.00 9.00
Hamiltonian REMA simple REM example	18.0 27.0 1350.0
 ♦ input file 1.in ♦ Run the test ♦ What's in a PARxxxx 	1359.0 1368.0 1377.0
 output to terminal exchange chart total energy collecting data for the target potential how to reorder data by replica REM efficiency monitoring trajectory 	1386.0 1926.0 1935.0 2475.0 2484.0 2493.0 2502.0 8892.0 8901.0 8910.0
flow monitoring trajectory flow (2) HREM with potential partitioning HREM with potential	• (

 HREM with potential partitioning (2)

 Solute Tempering extension

In each subdirectory one finds output from one trajectory. A useful file is REM_DIAGNOSTICS:

Time(fs)	Ens.Index Eto	t Ekin Epot	Unscaled	L_Epot(1) Uns	caled_Epot(2) Unscaled_Epot(3)
0.000	1 -15798.	591 3975.097	-20294.758	36.86108963	66.27519055	-20397.89417554	
9.000	1 -15799.	197 3941.835	-20268.162	48.33958736	69.89173141	-20386.39351932	
18.000	1 -15799.	348 3849.030	-20180.790	36.61301332	64.85898411	-20282.26240292	
27.000	1 -15799.	181 3885.160	-20221.080	59.92605948	76.18079698	-20357.18730765	
1350.000	1 -15810.	839 3921.483	-20032.673	44.99945318	71.23901455	-20148.91159616	
1359.000	1 -15810.	624 3863.698	-19971.024	55.31566941	65.84458965	-20092.18387400	
1368.000	2 -15005.	928 3832.054	-19934.166	46.66017953	64.12593199	-20044.95241986	
1377.000	2 -15008.	400 3910.391	-20015.584	55.69435608	66.28114096	-20137.55997783	
1386.000	1 -15812.	089 3905.204	-20005.686	39.16567754	64.59704046	-20109.44839358	
1926.000	2 -15013.	292 3673.233	-19566.784	71.44607447	65.80181736	-19704.03189459	
1935.000	2 -15013.	742 3753.891	-19648.255	48.80251814	72.37553816	-19769.43267586	
2475.000	2 -15017.	244 3886.572	-19709.729	65.61279004	59.80027938	-19835.14226040	
2484.000	2 -15015.	418 3799.623	-19619.400	46.35157101	59.93559335	-19725.68686377	
2493.000	3 -14258.	520 3823.324	-19648.693	66.39847825	60.42549336	-19775.51746544	
2502.000	3 -14257.	609 3846.527	-19674.834	47.17524086	60.32764207	-19782.33721673	
8892.000	5 -12883.	864 4017.228	-18906.366	85.57769971	63.23855096	-19055.18207049	
8901.000	4 -13556.	068 3933.928	-18804.655	67.43223259	61.38770229	-18933.47506054	
8910.000	4 -13556.	754 3912.949	-18776.002	84.37418764	73.93300859	-18934.30906146	
8919.000	5 -12887.	471 3860.507	-18708.009	84.38999028	69.17496051	-18861.57386744	

column 2 is the replica (="temperature") index applied to that trajectory at that time

ORAC In practice	Standard output reports program progression, and the exchange ratio between couples of replicas.
Examples	between couples of replicas.
Tests	
REM Tests	
Hamiltonian REM	
♦ A simple REM example	
♦ input file 1.in	
Run the test	
What's in a PARxxxx	
♦ output to terminal	
exchange chart	
✤ total energy	
 collecting data for the target potential 	
how to reorder data by replica	
♦ REM efficiency	
monitoring trajectory flow	
monitoring trajectory flow (2)	
HREM with potential partitioning	
HREM with potential partitioning (2)	
 Solute Tempering extension 	
Steered MD Tests	

31 / 50

ORAC	Standard output reports program progression, and the exchange ratio
In practice	between couples of replicas.
Examples	
Tests	==== current simulation time = 900.0
REM Tests	
Hamiltonian REM	
♦ A simple REM example	
♦ input file 1.in	
Run the test	
♦ What's in a PARxxxx	
♦ output to terminal	
♦ exchange chart	
✤ total energy	
 collecting data for the target potential 	
how to reorder data by replica	
REM efficiency	
monitoring trajectory flow	
monitoring trajectory flow (2)	
HREM with potential partitioning	
HREM with potential partitioning (2)	
Solute Tempering	
extension	

ORAC

In practice

Examples

Tests

REM Tests

Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

Run the test

♦ What's in a PARxxxx

output to terminal

exchange chart

total energy

 collecting data for the target potential

how to reorder data by replica

♦ REM efficiency

 monitoring trajectory flow

monitoring trajectory flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension

Steered MD Tests

Standard output reports program progression, and the exchange ratio between couples of replicas.

==== current simulation time = 900.0
==== current simulation time = 1800.0

ORAC

In practice

Examples

Tests

REM Tests

Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

Run the test

♦ What's in a PARxxxx

output to terminal

exchange chart

total energy

collecting data for the target potential

how to reorder data by replica

♦ REM efficiency

 monitoring trajectory flow

monitoring trajectory flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension

Steered MD Tests

Standard output reports program progression, and the exchange ratio between couples of replicas.

====	cur	rent	t s	simulatio	on time	=	900.0
====	cur	rent	t s	simulatio	on time	=	1800.0
Ep	kcha	nge	nı	umber:	112		
1	< =	: >	2	Nacc/N%	0.000		
2	< =	: >	3	Nacc/N%	14.286		
3	< =	: >	4	Nacc/N%	0.000		
4	< =	>	5	Nacc/N%	37.500		
5	< =	: >	6	Nacc/N%	0.000		
б	< =	: >	7	Nacc/N%	7.143		
7	< =	>	8	Nacc/N%	0.000		

ORAC
In practice
Examples
Tests
REM Tests
Hamiltonian REM
♦ A simple REM example
♦ input file 1.in
Run the test
What's in a PARxxxx
output to terminal
exchange chart
total energy
collecting data for the target potential
how to reorder data by replica
REM efficiency
monitoring trajectory

 monitoring trajectory flow

monitoring trajectory
 flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension Standard output reports program progression, and the exchange ratio between couples of replicas.

==== C	uri	rent		simulatio	on	time	=	900.0
==== C	urr	rent		simulatio	on	time	=	1800.0
Exc	har	nge	nı	umber:	1	12		
1 <	: =	>	2	Nacc/N%	0.	.000		
2 <	: =	>	3	Nacc/N%	14	1.286		
3 <	: =	>	4	Nacc/N%	0.	.000		
4 <	: =	>	5	Nacc/N%	37	7.500		
5 <	: =	>	6	Nacc/N%	0.	.000		
б <	: =	>	7	Nacc/N%	7.	.143		
7 <	: =	>	8	Nacc/N%	0.	.000		
==== C	urr	rent		simulatio	on	time	=	2700.0

ORAC In practice Examples Tests REM Tests & Hamiltonian REM & A simple REM example

♦ input file 1.in

Run the test

♦ What's in a PARxxxx

output to terminal

exchange chart

total energy

collecting data for the target potential

how to reorder data by replica

• • •

♦ REM efficiency

 monitoring trajectory flow

monitoring trajectory flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension Standard output reports program progression, and the exchange ratio between couples of replicas.

====	cur	rent	. :	simulatio	on	time	=	900.0
====	cur	rent	. :	simulatio	on	time	=	1800.0
E>	kchai	nge	nι	umber:	1	12		
1	< =	>	2	Nacc/N%	0	.000		
2	< =	>	3	Nacc/N%	14	1.286		
3	< =	>	4	Nacc/N%	0	.000		
4	< =	>	5	Nacc/N%	35	7.500		
5	< =	>	6	Nacc/N%	0	.000		
б	< =	>	7	Nacc/N%	7.	.143		
7	< =	>	8	Nacc/N%	0	.000		
====	cur	rent	. :	simulatio	on	time	=	2700.0

Steered MD Tests

ORAC

In practice

Examples

Tests

REM Tests

✤ Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

Run the test

♦ What's in a PARxxxx

♦ output to terminal

exchange chart

total energy

 collecting data for the target potential

how to reorder data by replica

♦ REM efficiency

monitoring trajectory flow

monitoring trajectory flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension Standard output reports program progression, and the exchange ratio between couples of replicas.

====	curi	cent		simulatio	on	time	=	900.0
====	curi	cent		simulatio	on	time	=	1800.0
Ep	kchai	nge	nı	umber:	1	12		
1	< =	>	2	Nacc/N%	0.	.000		
2	< =	>	3	Nacc/N%	14	1.286		
3	< =	>	4	Nacc/N%	0.	.000		
4	< =	>	5	Nacc/N%	37	7.500		
5	< =	>	6	Nacc/N%	0.	.000		
б	< =	>	7	Nacc/N%	7.	.143		
7	< =	>	8	Nacc/N%	0.	.000		
====	curi	rent	5 5	simulatio	on	time	=	2700.0

When program ends, you will probably want to check whether

• the exchanges are efficient ($\geq 20\%$)

ORAC

In practice

Examples

Tests

REM Tests

Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

Run the test

What's in a PARxxxx

♦ output to terminal

exchange chart

total energy

 collecting data for the target potential

how to reorder data by replica

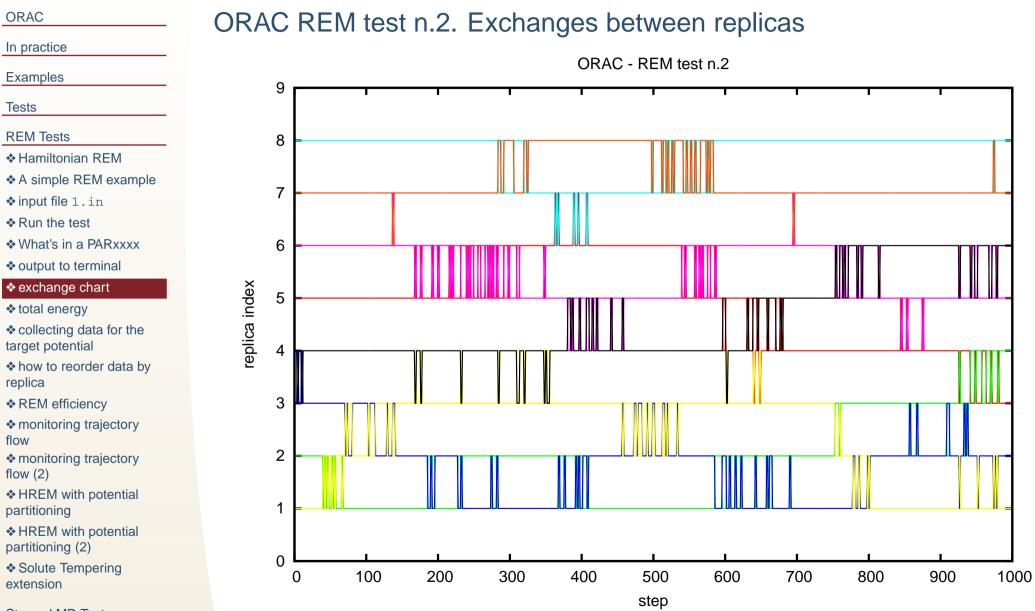
REM efficiency

monitoring trajectory flow

monitoring trajectory flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)


 Solute Tempering extension Standard output reports program progression, and the exchange ratio between couples of replicas.

====	cur	rent	t :	simulatio	on	time	=	900.0
====	cur	rent	t :	simulatio	on	time	=	1800.0
Ep	kcha	nge	n	umber:	1	12		
1	< =	>	2	Nacc/N%	0.	.000		
2	< =	>	3	Nacc/N%	14	1.286		
3	< =	>	4	Nacc/N%	0.	.000		
4	< =	>	5	Nacc/N%	37	7.500		
5	< =	>	6	Nacc/N%	0.	.000		
б	< =	>	7	Nacc/N%	7.	.143		
7	< =	>	8	Nacc/N%	0.	.000		
====	cur	rent	t :	simulatio	on	time	=	2700.0

When program ends, you will probably want to check whether

- the exchanges are efficient ($\geq 20\%$)
- each trajectory explores all "temperatures"

exchange chart

Steered MD Tests

total energy



Figure 2: ORAC REM test n.2. Energy of trajectories

1000

collecting data for the target potential

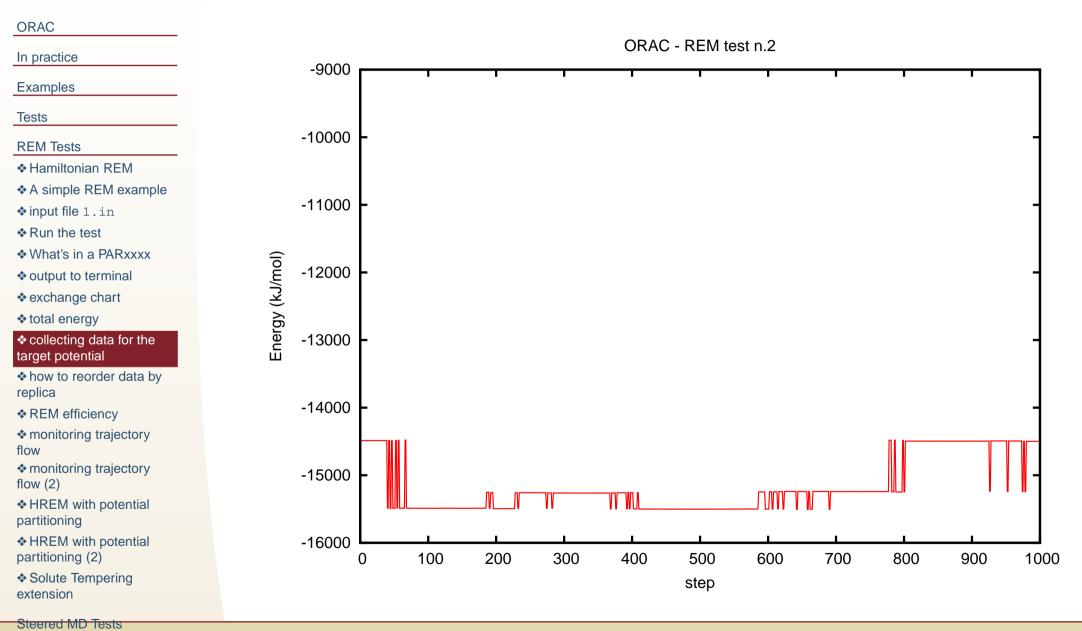


Figure 3: ORAC REM test n.2. Energy of target potential (replica 1) 34/50

ORAC	using order.sh, energy and structural data can be reordered by
In practice	
	replica:
Examples	
Tests	\$ cd orac-5_1_x/tests/REM_tests
REM Tests	\$ make test2
Hamiltonian REM	
A simple REM example	
♦ input file 1.in	
Run the test	
♦ What's in a PARxxxx	
 output to terminal 	
exchange chart	
✤ total energy	
 collecting data for the target potential 	
how to reorder data by replica	
♦ REM efficiency	
monitoring trajectory flow	
monitoring trajectory flow (2)	
HREM with potential partitioning	
 HREM with potential partitioning (2) 	
Solute Tempering	
extension	
Steered MD Tests	

\cap	D	
U	K/	10

In practice

Examples

Tests

REM Tests

✤ Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

Run the test

What's in a PARxxxx

output to terminal

exchange chart

total energy

collecting data for the target potential

how to reorder data by replica

♦ REM efficiency

 monitoring trajectory flow

monitoring trajectory flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension

Steered MD Tests

using order.sh, energy and structural data can be reordered by replica:

\$ cd orac-5_1_x/tests/REM_tests

\$ make test2

\$./order.sh 2.pdb REM_DIAGNOSTICS

ORAC In practice Examples	using order.sh, energy and structural data can be reordered by replica:
Tests REM Tests Hamiltonian REM A simple REM example	<pre>\$ cd orac-5_1_x/tests/REM_tests \$ make test2 \$./order.sh 2.pdb REM_DIAGNOSTICS \$ ls</pre>
 input file 1.in Run the test What's in a PARxxxx output to terminal 	
 exchange chart total energy collecting data for the 	
target potential	
 REM efficiency monitoring trajectory flow monitoring trajectory 	
flow (2) HREM with potential partitioning	
 HREM with potential partitioning (2) Solute Tempering extension 	
Steered MD Tests	

ORAC In practice Examples	using order.sh, energy and structural data can be reordered by replica:
Tests REM Tests Hamiltonian REM A simple REM example input file 1.in	<pre>\$ cd orac-5_1_x/tests/REM_tests \$ make test2 \$./order.sh 2.pdb REM_DIAGNOSTICS \$ ls 2-0001.pdb # data from PAR????/2.pdb, replica=1</pre>
 Run the test What's in a PARxxxx output to terminal exchange chart total energy collecting data for the target potential how to reorder data by replica 	2-0002.pdb # replica=2 2-0003.pdb 2-0004.pdb 2-0005.pdb 2-0006.pdb 2-0007.pdb 2-0008.pdb
 REM efficiency monitoring trajectory flow monitoring trajectory flow (2) HREM with potential partitioning HREM with potential partitioning (2) 	<pre>REM_DIAGNOSTIC-0001 # data from PAR????/REM_DIAGNOSTIC, replica=1 REM_DIAGNOSTIC-0002 REM_DIAGNOSTIC-0003 REM_DIAGNOSTIC-0004 REM_DIAGNOSTIC-0005 REM_DIAGNOSTIC-0006 REM_DIAGNOSTIC-0007</pre>
 Solute Tempering extension <u>Steered MD Tests</u> 	REM_DIAGNOSTIC-0007 REM_DIAGNOSTIC-0008 \$

ORAC
In practice
Examples
Tests
REM Tests
Hamiltonian REM
A simple REM example
♦ input file 1.in
Run the test
What's in a PARxxxx
output to terminal
exchange chart
total energy
 collecting data for the target potential
how to reorder data by replica
REM efficiency
monitoring trajectory flow
monitoring trajectory flow (2)
HREM with potential
partitioning
HREM with potential partitioning (2)
 Solute Tempering
extension

The program provides a default set of scaling coefficients, with equal spacing between adjacent temperatures (this set gives optimal overlap in a harmonic oscillator collection)

ORAC In practice

Examples

Tests

REM Tests

✤ Hamiltonian REM

- ♦ A simple REM example
- ♦ input file 1.in
- Run the test
- What's in a PARxxxx
- output to terminal
- exchange chart
- total energy
- collecting data for the target potential

how to reorder data by replica

REM efficiency

 monitoring trajectory flow
 monitoring trajectory flow (2)
 HREM with potential partitioning
 HREM with potential partitioning (2)

 Solute Tempering extension The program provides a default set of scaling coefficients, with equal spacing between adjacent temperatures (this set gives optimal overlap in a harmonic oscillator collection)

If replica exchange is not effective, you can

ORAC

In practice

Examples

Tests

REM Tests

Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

Run the test

What's in a PARxxxx

output to terminal

exchange chart

total energy

 collecting data for the target potential

how to reorder data by replica

REM efficiency

 monitoring trajectory flow
 monitoring trajectory flow (2)
 HREM with potential partitioning
 HREM with potential partitioning (2)

 Solute Tempering extension The program provides a default set of scaling coefficients, with equal spacing between adjacent temperatures (this set gives optimal overlap in a harmonic oscillator collection)

If replica exchange is not effective, you can

• increase the number of replicas

ORAC

In practice

Examples

Tests

REM Tests

Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

Run the test

♦ What's in a PARxxxx

output to terminal

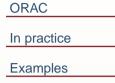
exchange chart

total energy

 collecting data for the target potential

how to reorder data by replica

♦ REM efficiency


 monitoring trajectory flow
 monitoring trajectory flow (2)
 HREM with potential partitioning
 HREM with potential partitioning (2)

 Solute Tempering extension The program provides a default set of scaling coefficients, with equal spacing between adjacent temperatures (this set gives optimal overlap in a harmonic oscillator collection)

If replica exchange is not effective, you can

- increase the number of replicas
- set the coefficients manually, decreasing the spacing between replicas that don't exchange well

monitoring trajectory flow

Tests

REM Tests

✤ Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

✤ Run the test

♦ What's in a PARxxxx

♦ output to terminal

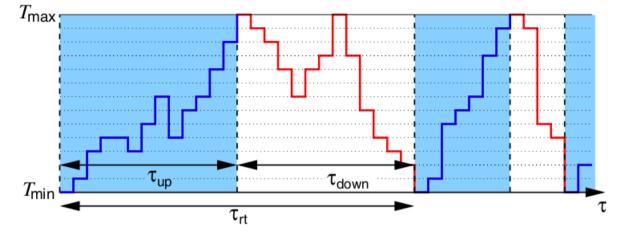
exchange chart

total energy

collecting data for the target potential

how to reorder data by replica

♦ REM efficiency

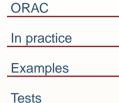

monitoring trajectory flow

monitoring trajectory
 flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension


fraction of trajectories that are travelling "up" at replica *i*:

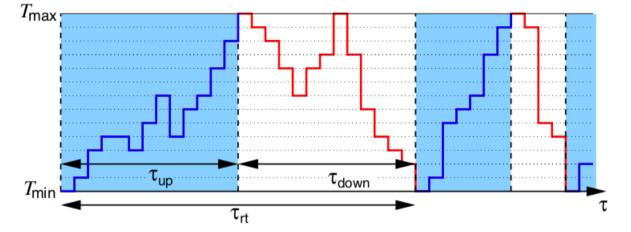
$$f_i^{up} = \frac{n_i^{up}}{n_i^{up} + n_i^{down}}$$

diffusivity at replica *i*:

$$D_i = \frac{\Delta T}{df/dT}$$

monitoring trajectory flow

REM Tests


- ✤ Hamiltonian REM
- ♦ A simple REM example
- ♦ input file 1.in
- Run the test
- ♦ What's in a PARxxxx
- output to terminal
- exchange chart
- total energy
- collecting data for the target potential
- how to reorder data by replica
- ♦ REM efficiency

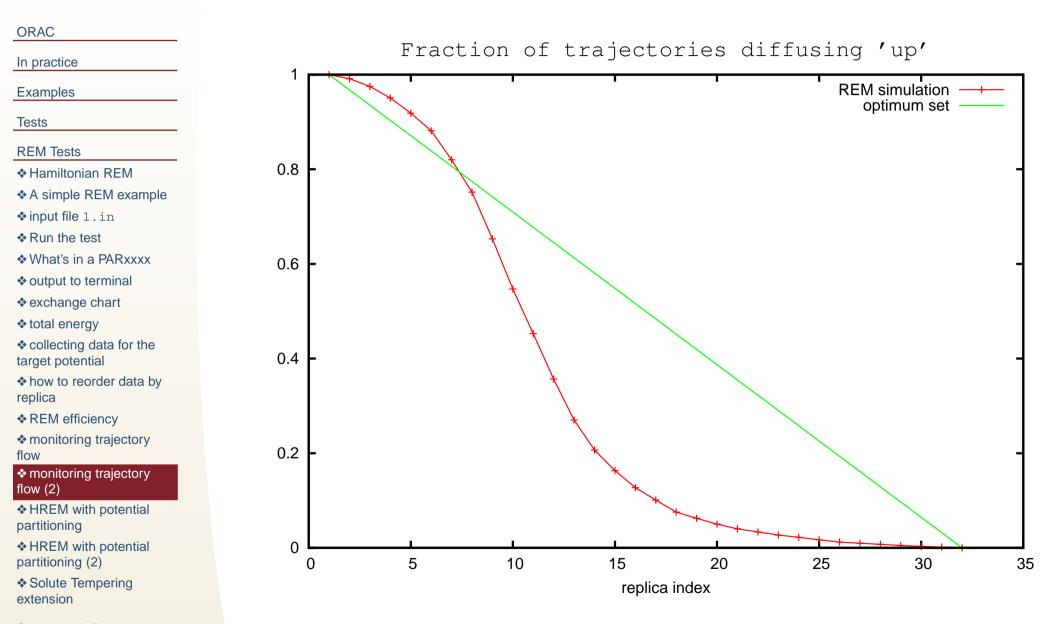
monitoring trajectory flow

monitoring trajectory
 flow (2)

- HREM with potential partitioning
- HREM with potential partitioning (2)

 Solute Tempering extension

fraction of trajectories that are travelling "up" at replica *i*:

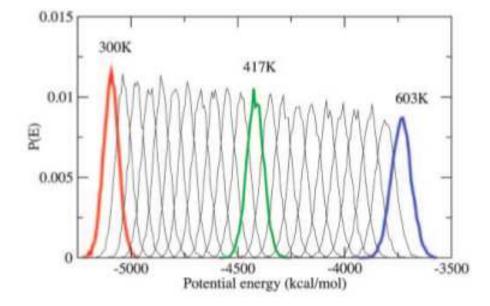

$$f_i^{up} = \frac{n_i^{up}}{n_i^{up} + n_i^{down}}$$

diffusivity at replica *i*:

$$D_i = \frac{\Delta T}{df/dT}$$

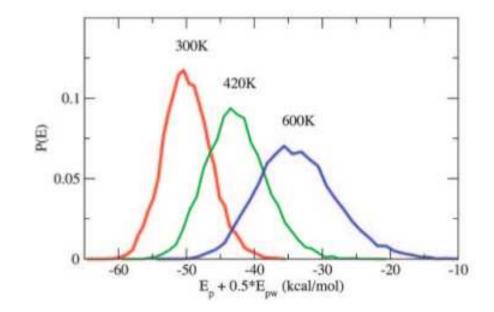
optimal: constant diffusivity

monitoring trajectory flow (2)



 In many cases, there is little advantage for conformational sampling in heating "stiff" degrees of freedom (e.g. stretching).

- In many cases, there is little advantage for conformational sampling in heating "stiff" degrees of freedom (e.g. stretching).
- The potential of these DoF can be kept fixed


- In many cases, there is little advantage for conformational sampling in heating "stiff" degrees of freedom (e.g. stretching).
- The potential of these DoF can be kept fixed
 - less energy spread ⇒ you can use fewer replicas / higher temperatures for the relevant degrees of freedom

- In many cases, there is little advantage for conformational sampling in heating "stiff" degrees of freedom (e.g. stretching).
- The potential of these DoF can be kept fixed
 - less energy spread ⇒ you can use fewer replicas / higher temperatures for the relevant degrees of freedom

normal REM

REM with pot. partitioning

ORAC

In practice

Examples

Tests

REM Tests

✤ Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

Run the test

♦ What's in a PARxxxx

output to terminal

exchange chart

total energy

collecting data for the target potential

how to reorder data by replica

REM efficiency

 monitoring trajectory flow

monitoring trajectory
 flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension

Steered MD Tests

In ORAC, different scaling can be applied to different parts of the potential

max. scaling	interaction
<i>c</i> ₁	stretching and bending
<i>C</i> ₂	torsion and 1-4 interaction
<i>C</i> 3	non-bonded

ORAC

In practice

Examples

Tests

REM Tests

Hamiltonian REM

♦ A simple REM example

♦ input file 1.in

Run the test

What's in a PARxxxx

output to terminal

exchange chart

total energy

 collecting data for the target potential

how to reorder data by replica

REM efficiency

 monitoring trajectory flow

monitoring trajectory flow (2)

HREM with potential partitioning

HREM with potential partitioning (2)

 Solute Tempering extension

Steered MD Tests

In ORAC, different scaling can be applied to different parts of the potential

max. scaling	interaction
<i>C</i> ₁	stretching and bending
<i>C</i> ₂	torsion and 1-4 interaction
<i>C</i> 3	non-bonded

Here is how this is implemented in REM test 3:

&REM
<pre># bend+bond torsion+1-4 nonbonded</pre>
SETUP 1.0 0.20 0.75 1
STEP 5.
PRINT 1000.
&END

Solute Tempering extension

ORAC In practice Examples Tests REM Tests	"SO	Ilso useful to partition the solute" \longrightarrow any portion vent" \longrightarrow the	•		"Se	solvent". gment" ronment"
 ♦ Hamiltonian REM ♦ A simple REM example 		interaction	S	S-E	E-E	
✤ input file 1.in		stretching and bending	1	1	1	
 ♦ Run the test ♦ What's in a PARxxxx 		torsion and 1-4	c_2	<i>C</i> ₂	1	
✤ output to terminal		non-bonded	<i>c</i> ₃ (or 1)	1 (or c_3)	1	
 exchange chart total energy collecting data for the target potential how to reorder data by replica REM efficiency monitoring trajectory flow monitoring trajectory flow (2) HREM with potential partitioning 				•		2
 partitioning HREM with potential partitioning (2) 						

Solute Tempering extension

Solute Tempering extension

ORAC In practice Examples Tests REM Tests	"SO	Iso useful to partition the lute" \longrightarrow any portion vent" \longrightarrow the		$em \longrightarrow$	"Se	solvent". gment" ronment"
♦ Hamiltonian REM		interaction	S	S-E	E-E]
 ♦ A simple REM example ♦ input file 1.in 		stretching and bending	1	1	1]
 In the test In a PARxxxx 		torsion and 1-4	C2	<i>C</i> 2	1	
✤ output to terminal		non-bonded	c_3 (or 1)	$1 (or c_3)$	1	
 exchange chart total energy 						J
collecting data for the target potential		is how this is implemente	d in RFM t	est 5:		
 how to reorder data by replica 		is new this is implemente		0010.		
 REM efficiency monitoring trajectory flow monitoring trajectory flow (2) HREM with potential partitioning HREM with potential partitioning (2) Solute Tempering extension 	SETUP SEGME def		n-bonded .20 1			

ORAC

In practice

Examples

Tests

REM Tests

Steered MD Tests

✤ Deca-Alanine

Flow chart

step 1: prepare canonical distributions

♦ step 2: run SMD in

parallel

step 2: (2) work paths

how it looks in real SMD simulations

step 3: estimate Free Energy Profile

step 3: estimate Free Energy Profile (2)

Deca-Alanine

ORAC

In practice

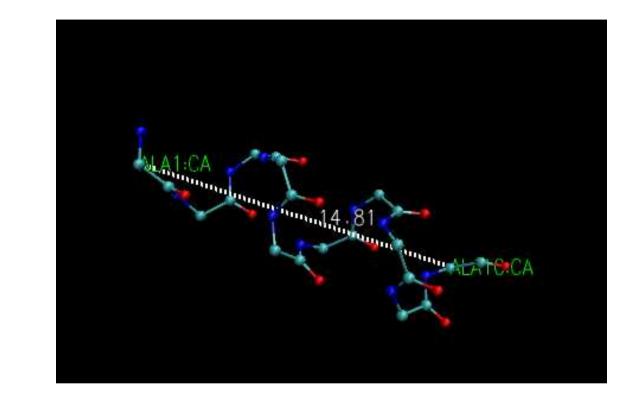
Examples

Tests

REM Tests

Steered MD Tests

Deca-Alanine


 Flow chart
 step 1: prepare canonical distributions
 step 2: run SMD in parallel

♦ step 2: (2) work paths

how it looks in real SMD simulations

step 3: estimate Free Energy Profile

step 3: estimate Free Energy Profile (2)

SMD additional potential: $V' = \frac{1}{2}k \left(d - \left(d_0 + v \cdot t\right)\right)^2$

- end-to-end distance $d = |C_1^{\alpha} C_{10}^{\alpha}|$
- state A: d = 15.5 (α -helix)
- state B: d = 31.5

ORAC

In practice

Examples

Tests

REM Tests

Steered MD Tests

Deca-Alanine

Flow chart

step 1: prepare canonical distributions
step 2: run SMD in parallel

♦ step 2: (2) work paths

how it looks in real SMD simulations

step 3: estimate Free Energy Profile

step 3: estimate Free Energy Profile (2) 1. Prepare a canonical sample of state A, $\{A_i\}$, and of state B, $\{B_j\}$

ORAC In practice Examples Tests REM Tests Steered MD Tests

Deca-Alanine

✤ Flow chart

step 1: prepare canonical distributions
step 2: run SMD in parallel

♦ step 2: (2) work paths

how it looks in real SMD simulations

step 3: estimate Free Energy Profile

step 3: estimate Free Energy Profile (2) Prepare a canonical sample of state A, {A_i}, and of state B, {B_j}
 For each starting state A_i, run a SMD simulation toward state B, recording the total work W done by the steering force; do the same, now going from B to A (*)

ORAC In practice Examples Tests REM Tests

Steered MD Tests

Deca-Alanine

Flow chart

step 1: prepare canonical distributions
step 2: run SMD in parallel

♦ step 2: (2) work paths

how it looks in real SMD simulations

step 3: estimate Free Energy Profile

step 3: estimate Free Energy Profile (2) 1. Prepare a canonical sample of state A, $\{A_i\}$, and of state B, $\{B_j\}$

- 2. For each starting state A_i , run a SMD simulation toward state B, recording the total work W done by the steering force; do the same, now going from B to A (*)
- 3. From the distribution of works, derive ΔF using Jarzynski identity

$$e^{-\beta\Delta F} = \overline{e^{-\beta W}} \tag{1}$$

ORAC In practice Examples Tests

REM Tests

Steered MD Tests

Deca-Alanine

Flow chart

step 1: prepare canonical distributions
step 2: run SMD in parallel

♦ step 2: (2) work paths

how it looks in real SMD simulations

step 3: estimate Free Energy Profile

step 3: estimate Free Energy Profile (2) 1. Prepare a canonical sample of state A, $\{A_i\}$, and of state B, $\{B_j\}$

- 2. For each starting state A_i , run a SMD simulation toward state B, recording the total work W done by the steering force; do the same, now going from B to A (*)
- 3. From the distribution of works, derive ΔF using Jarzynski identity

$$e^{-\beta\Delta F} = \overline{e^{-\beta W}} \tag{1}$$

or Crooks' theorem

$$P_{\mathcal{A}\to\mathcal{B}}(W) e^{-\beta W} = P_{\mathcal{A}\leftarrow\mathcal{B}}(-W) e^{-\beta\Delta F}$$
(2)

ORAC In practice Examples Tests

REM Tests

Steered MD Tests

✤ Deca-Alanine

Flow chart

step 1: prepare canonical distributions
step 2: run SMD in parallel

♦ step 2: (2) work paths

how it looks in real SMD simulations

step 3: estimate Free Energy Profile

step 3: estimate Free Energy Profile (2) 1. Prepare a canonical sample of state A, $\{A_i\}$, and of state B, $\{B_j\}$

- 2. For each starting state A_i , run a SMD simulation toward state B, recording the total work W done by the steering force; do the same, now going from B to A (*)
- 3. From the distribution of works, derive ΔF using Jarzynski identity

$$e^{-\beta\Delta F} = \overline{e^{-\beta W}} \tag{1}$$

or Crooks' theorem

$$P_{\mathcal{A}\to\mathcal{B}}(W) e^{-\beta W} = P_{\mathcal{A}\leftarrow\mathcal{B}}(-W) e^{-\beta\Delta F}$$
(2)

or other "bidirectional" methods that can estimate the free energy profile along the whole path $A \rightarrow B$

ORAC In practice Examples

Tests

REM Tests

Steered MD Tests

Deca-Alanine

Flow chart

step 1: prepare canonical distributions
step 2: run SMD in parallel

step 2: (2) work paths

how it looks in real SMD simulations

step 3: estimate Free Energy Profile

step 3: estimate Free Energy Profile (2) 1. Prepare a canonical sample of state A, $\{A_i\}$, and of state B, $\{B_j\}$

- 2. For each starting state A_i , run a SMD simulation toward state B, recording the total work W done by the steering force; do the same, now going from B to A (*)
- 3. From the distribution of works, derive ΔF using Jarzynski identity

$$e^{-\beta\Delta F} = \overline{e^{-\beta W}} \tag{1}$$

or Crooks' theorem

$$P_{\mathcal{A}\to\mathcal{B}}(W) e^{-\beta W} = P_{\mathcal{A}\leftarrow\mathcal{B}}(-W) e^{-\beta\Delta F}$$
(2)

or other "bidirectional" methods that can estimate the free energy profile along the whole path $A \rightarrow B$

(*) Step 2 can be performed in parallel

ORAC

In practice

Examples

Tests

REM Tests

Steered MD Tests

Deca-Alanine

Flow chart

step 1: prepare
 canonical distributions

step 2: run SMD in parallel

♦ step 2: (2) work paths

how it looks in real SMD simulations

step 3: estimate Free Energy Profile

step 3: estimate Free Energy Profile (2) \$ cd orac-5_1_x/tests/jarzynski_tests
\$ mpiexec -n 1 ../../src/PARALLEL/orac_Linux < 2Pa.in
\$ mpiexec -n 1 ../../src/PARALLEL/orac_Linux < 2Pb.in</pre>

ORAC

In practice

Examples

Tests

REM Tests

Steered MD Tests

Deca-Alanine

Flow chart

step 1: prepare canonical distributions

step 2: run SMD in parallel

♦ step 2: (2) work paths

how it looks in real SMD simulations

step 3: estimate Free Energy Profile

step 3: estimate Free Energy Profile (2) \$ cd orac-5_1_x/tests/jarzynski_tests \$ mpiexec -n 1 ../../src/PARALLEL/orac_Linux < 2Pa.in \$ mpiexec -n 1 ../../src/PARALLEL/orac_Linux < 2Pb.in</pre>

These commands create configuration files corresponding to a canonical distribution of state A and state B in directories RESTART_A/ and RESTART_B/, respectively.

ORAC

In practice

Examples

Tests

REM Tests

Steered MD Tests

Deca-Alanine

Flow chart

 step 1: prepare canonical distributions

step 2: run SMD in parallel

♦ step 2: (2) work paths

how it looks in real SMD simulations

step 3: estimate Free Energy Profile

step 3: estimate Free Energy Profile (2) \$ cd orac-5_1_x/tests/jarzynski_tests \$ mpiexec -n 1 ../../src/PARALLEL/orac_Linux < 2Pa.in \$ mpiexec -n 1 ../../src/PARALLEL/orac_Linux < 2Pb.in</pre>

These commands create configuration files corresponding to a canonical distribution of state A and state B in directories RESTART_A/ and RESTART_B/, respectively.

The parallell version of ORAC is used (on 1 processor) only for compatibility with step 2

ORAC

In practice

Examples

Tests

REM Tests

Steered MD Tests

Deca-Alanine

Flow chart

step 1: prepare canonical distributions

step 2: run SMD in parallel

step 2: (2) work paths

how it looks in real SMD simulations

step 3: estimate Free Energy Profile

step 3: estimate Free Energy Profile (2) \$ cd orac-5_1_x/tests/jarzynski_tests \$ mpiexec -n 1 ../../src/PARALLEL/orac_Linux < 2Pa.in \$ mpiexec -n 1 ../../src/PARALLEL/orac_Linux < 2Pb.in</pre>

These commands create configuration files corresponding to a canonical distribution of state A and state B in directories RESTART_A/ and RESTART_B/, respectively.

The parallell version of ORAC is used (on 1 processor) only for compatibility with step 2

• this is how this is implemented in test 2Pa:

&INOUT
RESTART
write 250.0 SAVE_ALL_FILES/RESTART_A/ala10_A
END
&END

step 2: run SMD in parallel

ORAC

In practice

Examples

Tests

REM Tests

Steered MD Tests

Deca-Alanine

Flow chart

step 1: prepare canonical distributions

♦ step 2: run SMD in parallel

♦ step 2: (2) work paths

how it looks in real SMD simulations

step 3: estimate Free Energy Profile

step 3: estimate Free Energy Profile (2)

\$ cd orac-5_1_x/tests/jarzynski_tests

step 2: run SMD in parallel

ORAC

In practice

Examples

Tests

REM Tests

Steered MD Tests

Deca-Alanine

Flow chart

♦ step 1: prepare

parallel

step 2: (2) work paths

how it looks in real SMD simulations

step 3: estimate Free Energy Profile

step 3: estimate Free Energy Profile (2) \$ cd orac-5_1_x/tests/jarzynski_tests \$ mpiexec -n 4 ../../src/PARALLEL/orac_Linux < 3a.in \$ mpiexec -n 4 ../../src/PARALLEL/orac_Linux < 3b.in</pre>

These commands start 4 parallel processes in directories PAR0000 ... PAR0003 creating workfunction files WRKa.1 and WRKb.1 in each directory

step 2: run SMD in parallel

ORAC

In practice

Examples

Tests

REM Tests

Steered MD Tests

Deca-Alanine

Flow chart

♦ step 1: prepare

canonical distributions ♦ step 2: run SMD in

parallel

step 2: (2) work paths
how it looks in real SMD simulations
step 3: estimate Free

Energy Profile step 3: estimate Free Energy Profile (2) \$ cd orac-5_1_x/tests/jarzynski_tests \$ mpiexec -n 4 ../../src/PARALLEL/orac_Linux < 3a.in \$ mpiexec -n 4 ../../src/PARALLEL/orac_Linux < 3b.in</pre>

These commands start 4 parallel processes in directories PAR0000 ... PAR0003 creating workfunction files WRKa.1 and WRKb.1 in each directory

```
# The bending inclving dum atom with large mass is required
# in order to stretch 10-alanine along the z-coordinate
& POTENTTAL
  ADD STR BONDS 1 102 400.0 15.5 31.5
  ADD STR BENDS 102 1 105 600.0 180.0
  . . .
&END
# Unfolding of 10-ala occurs in 10000 fs.
&RUN
  CONTROL
                        2
  REJECT
                    0.0
  STEER
             0.0 9900.0
                   9900.0
  TIME
  MAXRUN
                   9900.0
&END
& INOUT
  RESTART
    rmr ../RESTART_A/ala10_A 0
  END
  PLOT STEER ANALYTIC 300.0 OPEN WRKa.1
&END
```

step 2: (2) work paths

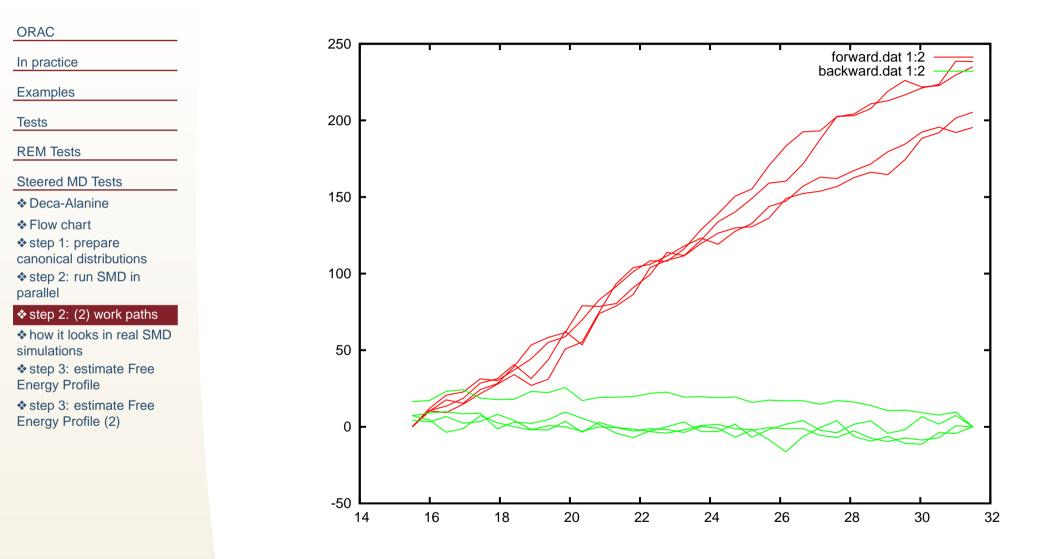


Figure 4: Jarzynski test 2P

how it looks in real SMD simulations

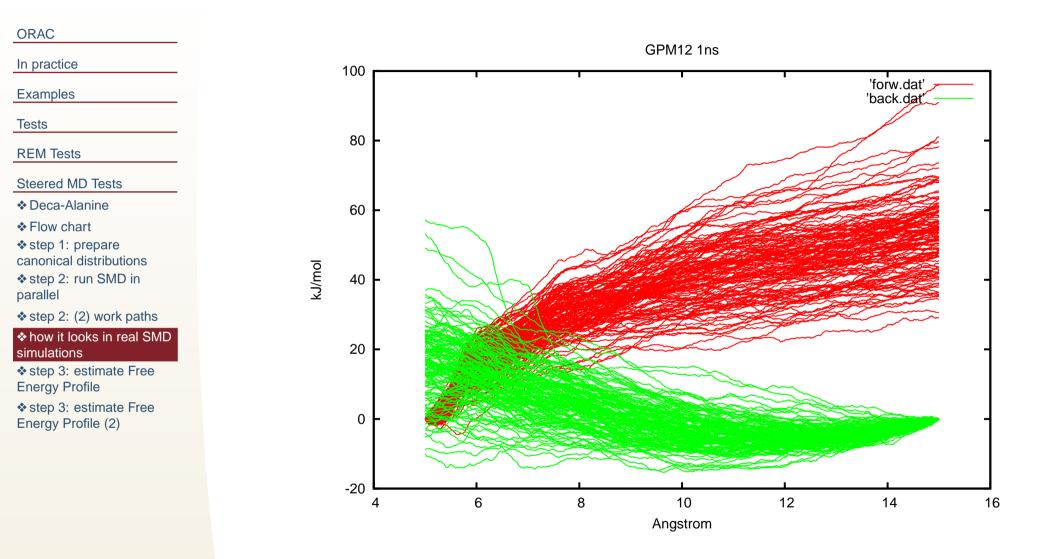


Figure 5: real-world example

ORAC	• the most accurate results are obtained with bidirectional methods
In practice	
Examples	
Tests	
REM Tests	
Steered MD Tests	
♦ Deca-Alanine	
Flow chart	
step 1: prepare	
canonical distributions step 2: run SMD in	
parallel	
step 2: (2) work paths	
how it looks in real SMD simulations	
♦ step 3: estimate Free Energy Profile	
 step 3: estimate Free Energy Profile (2) 	

ORAC In practice Examples Tests REM Tests

Steered MD Tests

Deca-Alanine

Flow chart

step 1: prepare

canonical distributions

step 2: run SMD in parallel

step 2: (2) work paths

how it looks in real SMD simulations

step 3: estimate Free Energy Profile

step 3: estimate Free Energy Profile (2) the most accurate results are obtained with bidirectional methods these are *experimentally* implemented in the auxiliary program fes, which currently uses fixed names for input files

\$ cd orac-5_1_x/tests/jarzynski_tests

ORAC In practice Examples Tests REM Tests Steered MD Tests * Deca-Alanine * Flow chart * step 1: prepare canonical distributions * step 2: run SMD in parallel * step 2: (2) work paths

how it looks in real SMD simulations

step 3: estimate Free Energy Profile

step 3: estimate Free Energy Profile (2) the most accurate results are obtained with bidirectional methods these are *experimentally* implemented in the auxiliary program fes, which currently uses fixed names for input files

\$ cd orac-5_1_x/tests/jarzynski_tests
\$ make fes

ORAC In practice Examples Tests REM Tests Steered MD Tests & Deca-Alanine & Flow chart

parallelstep 2: (2) work pathshow it looks in real SMD

step 1: prepare canonical distributions
step 2: run SMD in

simulations step 3: estimate Free Energy Profile

step 3: estimate Free Energy Profile (2) the most accurate results are obtained with bidirectional methods these are *experimentally* implemented in the auxiliary program fes, which currently uses fixed names for input files

\$ cd orac-5_1_x/tests/jarzynski_tests
\$ make fes
\$ for i in `ls -d PAR*`; do mv \$i/WRKa.1 FORWARD/WRKa.\$i; done
\$ for i in `ls -d PAR*`; do mv \$i/WRKb.1 REVERSE/WRKb.\$i; done

ORAC In practice Examples Tests REM Tests Steered MD Tests & Deca-Alanine & Flow chart

step 1: prepare canonical distributions
step 2: run SMD in parallel

step 2: (2) work paths
how it looks in real SMD

simulations

step 3: estimate Free Energy Profile

step 3: estimate Free Energy Profile (2) the most accurate results are obtained with bidirectional methods these are *experimentally* implemented in the auxiliary program fes, which currently uses fixed names for input files

```
$ cd orac-5_1_x/tests/jarzynski_tests
$ make fes
$ for i in `ls -d PAR*`; do mv $i/WRKa.1 FORWARD/WRKa.$i; done
$ for i in `ls -d PAR*`; do mv $i/WRKb.1 REVERSE/WRKb.$i; done
$ echo 4 | ./fes
```

ORAC	the last command produces the following output:
In practice	
Examples	<pre># position, DF_AQ_EQ8, DF_AQ_EQ9, DF_AQ_EQ16, DF_AQ_MINH, DF_AQ_PMFA, DF_AQ_J, DF_BQ_J</pre>
Tests	15.9848500 5.3572 5.3496 5.3572 10.6992 0.0000 10.6992 6.5107 16.4697000 5.6583 5.5398 5.6583 12.1777 1.4786 12.1777 5.4125
REM Tests	16.9545500 4.5535 4.8978 4.5535 16.4513 5.7521 16.4513 -0.1450 17.4393900 9.7112 9.7197 9.7112 24.1973 13.4981 24.1973 1.7528
Steered MD Tests	••••
♦ Deca-Alanine	31.0151500 92.3263 93.6842 93.6842 91.7988 81.0997 195.5132 -4.3500 31.5000000 95.5277 97.2839 97.2839 94.9066 84.2075 198.8083 -1.2422
Flow chart	51.5000000 55.5277 57.2035 57.2035 54.5000 04.2075 150.8003 -1.2422
 step 1: prepare canonical distributions step 2: run SMD in parallel 	
step 2: (2) work paths	
 how it looks in real SMD simulations step 3: estimate Free Energy Profile 	

step 3: estimate Free Energy Profile (2)

FEP (with different methods), while the last two

ORAC	the last command produces the following output:
In practice	5 1 1
Examples	# position, DF AQ EQ8, DF AQ EQ9, DF AQ EQ16, DF AQ MINH, DF AQ PMFA, DF AQ J, DF BQ J
Tests	15.9848500 5.3572 5.3496 5.3572 10.6992 0.0000 10.6992 6.5107 16.4697000 5.6583 5.5398 5.6583 12.1777 1.4786 12.1777 5.4125
REM Tests	16.95455004.55354.89784.553516.45135.752116.4513-0.145017.43939009.71129.71979.711224.197313.498124.19731.7528
Steered MD Tests	
✤ Deca-Alanine	31.0151500 92.3263 93.6842 93.6842 91.7988 81.0997 195.5132 -4.3500
✤ Flow chart	31.5000000 95.5277 97.2839 97.2839 94.9066 84.2075 198.8083 -1.2422
 step 1: prepare canonical distributions step 2: run SMD in parallel 	columns 2-6 report the FEP (with different methods), while the columns give Jarzynski estimate for the forward and backward
♦ step 2: (2) work paths	transformation
 how it looks in real SMD simulations step 3: estimate Free Energy Profile step 3: estimate Free 	liansionnalion

Energy Profile (2)

50 / 50